首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
阐述ZPW-2000A移频脉冲轨道电路的功能、系统构成、主要设备的工作原理。对ZPW-2000A移频脉冲轨道电路传输安全性问题,包括解决分路不良、绝缘破损检查、道岔跳线断线的列车分路检查、断轨检查、站口两端复线间横向连接线的同时设置、"绝缘单破损+列车分路侧扼流单断线"的列车分路等进行分析。  相似文献   

2.
ZPW-2000型移频轨道电路是铁路信号系统的重要基础设备.为分析轨道电路区段间相互关系和调谐区故障对两侧区段的影响,根据ZPW-2000型移频轨道电路的数学模型,采用Simulink仿真工具设计轨道电路各模块的仿真模型,根据该种轨道电路的构成原理和多段轨道电路间的衔接关系,构建ZPW-2000型多段轨道电路仿真模型....  相似文献   

3.
根据均匀传输线和四端网络理论,建立ZPW-2000无绝缘轨道电路分路电流的计算模型,利用MATLAB软件实现相邻区段干扰电流的数值算法,对轨道电路正常情况、调谐单元故障情况下邻区段干扰电流的分布进行仿真.  相似文献   

4.
横向连接在高铁中广泛使用对ZPW-2000系列轨道电路的正常工作造成了潜在威胁,当发生断轨事故时,存在一条回路,使信号依靠该迂回电路向轨道接收端传输信息,导致轨道电路失去断轨检查功能,威胁行车安全。现有的轨道电路仿真和计算并未深入研究,未考虑迂回通道中贯通地线、扼流变压器以及断轨阻抗等完整情况的影响。对此问题进行仿真建模研究对于实现轨道电路的故障诊断,保证列车行车安全具有重要的意义。本文根据四端网理论以及边界条件分析法得到轨道电路断轨状态下的迂回电路模型。经过仿真得到接收端断轨残压与迂回干扰叠加信号,并分析信号载频、道砟电阻、断轨阻抗、轨道电路长度以及迂回长度等因素对接收端干扰的影响,最终计算得到ZPW-2000轨道电路最短迂回电路的相关数值。  相似文献   

5.
轨道电路分路不良是影响铁路运输效率和运营安全的重要因素。本文基于ZPW-2000型轨道电路理论模型分析了分路不良对机车感应电流信号的影响,采用小波分解与重构算法对正常和分路不良情况下分路电流信号的细节分量进行分析与比较,在此基础上提取了分路不良预测所需的特征参量,通过粒子群参数优化的支持向量机模型实现分路不良的预测。通过对比实验结果表明:本方法能够有效预测轨道电路分路不良现象,预测正确率可达99.5%,高于其他方法。  相似文献   

6.
针对单开道岔区段1送2受型轨道电路电气特性,根据均匀传输线方程与四端网络理论建立典型25 Hz相敏轨道电路仿真计算模型;计算带BE型扼流变压器时轨道电路调整和分路状态下发送电压和电流,结果验证了该模型的正确性和有效性。将模型中的扼流变压器四端网络替换为BES型扼流适配变压器四端网络,从而将该模型拓展应用到带BES的轨道电路区段。根据实测数据计算BES型扼流适配变压器四端网络系数,再采用拓展的仿真模型,计算得到带扼流适配器轨道电路在1送2受区段的调整表。通过计算和分析该轨道电路区段的分路灵敏度和电压余量比可知,二者均满足轨道电路正常工作要求,道岔岔尖是1送2受型轨道电路区段中最易导致分路不良的机械环节。采用该拓展模型仿真计算还可得到轨道电路区段在不同道砟电阻情况的调整表。该模型也可拓展应用于三开、复式交分等道岔区段以及ZPW-2000A型等其他制式轨道电路调整表的计算。  相似文献   

7.
在现场的应用中,ZPW-2000A型无绝缘移频轨道电路在安全性和可靠性方面有着显著优势,但其分路特性的改善是需要关注的问题。采用电平衰耗法的计算方法,对无补偿电容、有补偿电容和有最佳补偿电容时的无绝缘轨道电路的分路特性进行分析,并用Matlab软件仿真得到轨面各点的分路灵敏度和分路残压比较结果。结果表明,补偿电容对轨道电路的分路特性有明显的改善作用,而找到最佳补偿电容值对轨道电路进行补偿,不但能同时保证轨道电路全程可靠分路,并且降低了分路残压,使得无绝缘轨道电路的分路特性更稳定。  相似文献   

8.
基于ZPW-2000A轨道电路监测子系统平台,设计一种区间轨道电路区段"分路不良"报警功能。该报警逻辑基于实时采集的区段占用或空闲状态,能够判断出大部分区间区段"分路不良"情况。进行报警逻辑的实现及报警界面设计,在模拟测试环境下,进行多种情况下的报警测试,测试结果与预期一致。  相似文献   

9.
目前,电务部门在测量轨道电路分路状况时,是用1根导线在钢轨上模拟车辆轮对的阻值进行分路。由于分路状态因人、因地点而异,所以不能保证分路状态的一致性和对钢轨接触的良好性。针对这种情况,研制了智能轨道电路分路测试仪。它根据现场实际需要,模拟轨道电路最不利条件下的轨道分路情况,并进行综合测试,避免了人为误差,且操作简单,使用方便。  相似文献   

10.
国内某些既有普速线ZPW-2000A轨道电路存在调整电压、分路残压过高的现象,严重时会导致占用丢失,影响行车安全。选取几个典型的占用丢失区段,用m a t l a b进行建模仿真计算,分析不同道砟电阻值对轨道电路调整的影响,并提出降低调整电压的方法,为后续解决彻底该类问题提供思路。  相似文献   

11.
基于ZPW-2000A轨道电路监测子系统平台,设计一种区间轨道电路区段“分路不良”报警功能.该报警逻辑基于实时采集的区段占用或空闲状态,能够判断出大部分区间区段“分路不良”情况.进行报警逻辑的实现及报警界面设计,在模拟测试环境下,进行多种情况下的报警测试,测试结果与预期一致.  相似文献   

12.
通过选取兰渝线ZPW-2000A/K型轨道电路道床漏泄严重情况和“红光带”状况的轨道电路区段,通过搭建轨道电路仿真计算模型与实地采样对比测试验证分析在25μF和50μF两种补偿电容配置下的轨道电路常规性能,评估两种配置下ZPW-2000A/K型轨道电路对低电阻道床的适应能力,研究增强ZPW-2000A/K型轨道电路在低电阻道床漏泄环境下运行能力的有效方法。  相似文献   

13.
介绍ZPW-2000A移频脉冲轨道电路的工作原理,从解决分路不良、绝缘破损检查、防止绝缘节烧损3方面体现该新型轨道电路的技术优势。结合兰州西站存车场轨道电路的工程设计经验,重点研究该新型轨道电路系统与ZPW-2000A轨道电路系统之间的差异,以期对相关铁路工程设计起到一定的借鉴作用。  相似文献   

14.
针对高速铁路的特点,对信号中继站控制范围内ZPW-2000轨道电路叠加计轴轨道电路的设计方案进行了探讨.文中的设计方案充分利用列控中心来传输计轴轨道电路的相关信息,实现中继站管辖范围内计轴轨道电路的控制,解决了当道砟床电阻小于0.5 Ω·km时,ZPW-2000A轨道电路分路不良的问题.  相似文献   

15.
通信编码ZPW-2000系列轨道电路已广泛应用于高速铁路,其与外部设备的接口对象主要涉及列车运行控制(简称:列控)中心。目前,针对轨道电路设备的整体功能测试,只有能够简单模拟列控中心编码功能的简易测试环境,缺少能够模拟全部接口功能的集成测试环境。分析了通信编码ZPW-2000轨道电路与列控中心间的接口需求,设计了可模拟相应接口功能的仿真测试平台,将其用于通信编码ZPW-2000轨道电路的研发和测试,不仅降低测试环境的成本,而且更加灵活、便捷、高效和自动地完成测试工作。  相似文献   

16.
国内普速铁路站内轨道电路绝大部分采用25 Hz轨道电路,但在运用维护中也逐渐暴露出分路不良、轨道电路和电码化“两层皮”等亟需解决的问题。ZPW-2000A移频脉冲轨道电路集成移频和脉冲两种轨道电路的优点,用两种信号的优势解决站内轨道电路顽疾。论证了ZPW-2000A移频脉冲轨道电路在普铁上应用的可行性。  相似文献   

17.
分路不良是指列车压入轨道区段后列车轮对无法短路钢轨,造成轨道继电器不能落下,形成室内控制台无法反映列车运行情况,发生严重的行车安全事故。造成轨道电路分路不良的原因多为污染严重、车辆很少行走钢轨生锈表面氧化。  相似文献   

18.
在传输线理论和四端口网络的基础上,建立ZPW-2000A型轨道电路机车感应信号电流模型,仿真得到正常和分路不良逐渐严重的5类信号,并对比分析正常和分路不良信号的曲线特征。为实现轨道电路分路不良故障监测,运用双指标法确定变分模态分解的模态数K;用变分模态分解算法将5类信号分解成K个固有模态,并提取能量谱特征和传统时域特征;将提取的故障信号特征输入到粒子群支持向量机(PSO-SVM)中,实现分路不良的故障监测,且使用能量谱特征的监测精度大于使用传统的时域特征。实验结果表明:使用变分模态分解算法能够有效分解轨道电路正常和分路不良的信号,便于分路不良故障特征的提取;能量谱特征集较于传统时域特征集,更利于故障分类。  相似文献   

19.
ZPW-2000轨道电路和QJK-JS(区间综合监控系统)作为信号系统的重要组成部分,前者能够实时追踪和监测列车运行位置,后者实现列车在区间运行“三点”检查,都是保障列车安全运行的重要装备,其稳定性、可靠性与列车运行安全和正常秩序息息相关。通过对ZPW-2000轨道电路与QJK-JS结合问题案例进行分析,提出施工质量源头控制措施,把问题解决在设备开通运营前,保证ZPW-2000轨道电路稳定、可靠投入使用,保障列车运行安全。  相似文献   

20.
由于轨道电路及其应用环境的复杂性,仿真技术被越来越多的应用于轨道电路系统的研究工作。对基于电路仿真的轨道电路仿真技术进行研究,建立轨道电路系统模型及各个模块的仿真模型,进而提出轨道电路仿真系统结构,并实现一套基于电路仿真的ZPW-2000A轨道电路仿真系统。试验结果表明该系统90%的仿真计算结果误差小于3%,误差最大为6%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号