首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
通过理论分析,找出了影响地铁车站机械排烟效率的关键因素——吸穿效应。采用FDS软件模拟分析了下排烟口、侧排烟口工况中不同挡烟垂壁底标高时,排烟口处CO平均体积分数随排烟口下方烟气层厚度变化的情况。对比分析了排烟口下方的烟气层厚度变化时排烟系统的排烟效率变化情况。找出了最佳的排烟管底标高及站厅层公共区挡烟垂壁底标高。  相似文献   

2.
基于某超长水下公路隧道的重点排烟系统,采用羽流质量流量的计算公式得出火灾产烟量,使用火灾烟气模拟软件FDS建立分析模型,对超长水下隧道重点排烟系统的排烟量、排烟效率、纵向风速、开启排烟口方案、火源上游可用疏散时间等进行了分析。首先,介绍了现有重点排烟系统及重点排烟量设计标准的相关内容;其次,提出了重点排烟量的理论计算方法;最后分析了该超长水下隧道重点排烟系统的各工况排烟效果,认为采用羽流质量流量的计算公式、排烟口设置对应的排烟效率进行理论重点排烟量计算,排烟风道、排烟风机需考虑排烟口漏风量。  相似文献   

3.
为分析上海地铁1号线某枢纽车站隧道火灾防排烟能力,分别对该站自然通风、开/关站台轨旁侧排烟风机(UPE)等机械排烟条件下,10 MW列车火灾时的车站烟气温度场、烟雾分布及浓度进行了数值模拟与分析研究。研究表明,火灾列车进入车站时必须及时开启车站排烟风机(SEF)、隧道事故风机(TVF)和轨旁侧排烟风机(UPE),方能使站台隧道内风速接近临界速度,基本消除站台隧道内烟气逆向扩散,同时烟雾限制在隧道局部且浓度较低,有利乘客疏散。目前该排烟机制下站台层部分楼梯口烟气温度仍偏高,风速未达到地铁设计规范要求,存在安全隐患,应当引起运营部门的重视。  相似文献   

4.
针对地铁、国铁同台驳接入铁路枢纽的地铁车站,地铁地面站台位于交通枢纽内部的特殊形式,站台层的排烟方案需根据建筑形式进行特殊考虑。对站台层的排烟方案进行对比分析,通过火灾烟气模拟,对烟气自然扩散、自然排烟和机械排烟3种排烟方案进行对比分析。烟气自然蔓延条件下,能见度无法保证人员安全疏散。由于建筑形式的特殊,无法满足自然排烟条件。为保证安全,设置了机械排烟系统。对与国铁站房结合的综合枢纽中地铁车站排烟方式,应将自然排烟的可行性纳入其初期建筑方案中优先考虑。  相似文献   

5.
地铁车辆基地排烟口设置位置对上盖物业的影响较大,分析地铁车辆基地排烟口可能的开设位置,采用数值模拟方法研究排烟口不同开设位置下烟气蔓延的影响因素及规律。研究结果表明:为避免车辆基地火灾烟气对上盖物业的影响,当排烟口开设在车辆基地顶部时,排烟口与上盖物业之间的水平距离不应小于13 m;当排烟口开设在车辆基地侧墙时,防火挑檐宽度不应小于4 m。  相似文献   

6.
基于对地铁车站火灾产物影响的分析,以广州地铁13号线白江站为研究对象,使用PyroSim软件构建地铁车站火灾排烟模式仿真模型,对地铁车站火灾烟气扩散特性、火灾产物发展趋势等进行仿真分析。在此基础上,提出以加快烟气消散速度、减缓温度上升速度和增加能见度距离为优化目标的6种优化方案,并进行仿真对比分析。结果表明:当火源位于站台中部时,在站台加设排风机可有效提升火灾排烟效率,同时在部分区域设置有效高度的挡烟垂壁可对烟气控制起到有效的辅助作用。  相似文献   

7.
研究火灾烟气状态对排烟风机性能的影响,系统分析了地铁隧道火灾烟气的烟囱效应和热阻效应,将地铁隧道系统和排烟风机作为一个整体考虑,分析隧道烟气温度和密度沿程变化规律,建立隧道火灾网络模拟的数学模型,提出在隧道火灾排烟网络模拟时应以质量流量替代体积流量和风机性能的修正方法,研究了隧道火灾烟气流动模拟的数值方法,综合分析地铁隧道火灾的热阻效应、烟囱效应及烟流状态对地铁排烟风机排烟能力的影响。研究方法和结果为地铁隧道火灾烟气控制和事故应急处理决策提供科学依据。  相似文献   

8.
为了提高地铁车站站厅层公共区的排烟效率,针对郑州某地铁车站站厅层公共区设计了不同的排烟工况。通过利用FDS模拟软件对不同的排烟工况进行仿真模拟,得到下排烟口、侧排烟口、顶排烟口3种工况下温度、能见度、CO浓度随时间的变化图,通过对比分析得出结论:侧排烟口、顶排烟口、顶排风口均能满足人员的安全疏散要求;侧排烟口、顶排烟口比下排烟口的排烟效果好,侧排烟口和顶排烟口的排烟效果基本相同。通过进一步比较侧排烟口个数及大小对人员安全疏散的影响,得出:6个侧排烟口、3个侧排烟口比12个侧排烟口的排烟效果好;6个侧排烟口与3个侧排烟口的排烟效果基本相同。  相似文献   

9.
采用全尺寸热烟试验方法在深圳地铁莲花北站至少年宫站区间隧道进行机械排烟试验,测试位置位于正线隧道与联络线隧道交汇处以及马蹄形隧道单洞双线与马蹄形隧道单洞单线的交汇处。模拟车头、车尾火灾进行排烟,相邻车站隧道风机进行辅助排烟,测试各种排烟模式,观察各种防排烟模式下的排烟效果;研究复杂线路交汇处隧道烟气运动、蔓延情况和设备的工况,并测量和记录风速等数值。实验结果可对隧道防排烟设计、火灾控制提供数据支持,并为列车中部着火且停在隧道内提供疏散方案。  相似文献   

10.
以水平公路隧道为研究对象,分析30 MW火灾下的排烟速率理论计算方法及排烟阀下方发生吸穿现象时的烟气层厚度临界值。通过数值模拟,获得不同排烟速率下排烟阀下方的温度、流速、烟气层厚度,验证了排烟阀下方烟气层吸穿现象的存在,为集中排烟模式的优化提供参考。  相似文献   

11.
介绍了武汉轨道交通8号线大直径盾构越江区间隧道的通风设计方案,特别对火灾工况,从排烟模式、风道漏风、风机配置等方面,比较了分段纵向通风和半横向通风两种方式的优缺点,最终选定了分段纵向排烟方案。在火灾规模取值10.5MW条件下,利用SES软件对区间内典型火灾工况进行了模拟计算分析,结果表明通过区间两端风机联合动作,采用集中设置排烟口的分段纵向排烟方案,可满足越江区间内火灾排烟临界风速及人员疏散要求。  相似文献   

12.
在深圳地铁会展中心站和岗厦站进行全尺寸火灾实验,对含屏蔽门的站台机械排烟和正压送风挡烟的有效性进行检验.实验中使用0.7 MW的甲醇池火,对站台内烟气温度分布和关键位置的风速进行测量.结果表明:当站台启动排烟后,站台两侧区域烟气逐渐沉降至地面,无法排出站台而形成排烟死角,在站台两侧增加补风口后排烟效果得到明显改善.站厅正压送风挡烟效果与站台的结构密切相关,对于不含中庭的站台,采用正压送风可以有效地防止烟气向上层蔓延;对于含有中庭的地铁站台,必须通过降低挡烟垂壁的高度才能将烟气控制在起火层内.  相似文献   

13.
在地铁站火灾中,对人员危害最大的不是火本身,而是因火灾而产生的有毒有害气体,因此研究高效的烟气控制模式就具有积极意义。本文采用CFD方法运用κ-ε双方程三维紊流模型分别对轨道中央列车车厢和站台层左侧两楼梯中间位置着火情况下烟气扩散情况进行模拟,比较屏蔽门对站台层火灾烟气扩散的影响。结果表明:安装屏蔽门并制定相对应的自动门开启数量后,至少能保证6 min的安全疏散时间;排烟风机对站台层的抽吸作用更加集中,风机的效率至少提高10%;站台层内温度也随着排烟效率的提高而显著降低。该研究为城市地铁防排烟提供了新思路和新方法,也为地铁应急疏散预案的制定和性能化消防设计提供理论依据。  相似文献   

14.
根据地铁车站物理模型,对站台层列车中部车厢着火引发火灾时的烟气扩散进行三维模拟,分析安装屏蔽门对岛式和侧式2种典型结构站台层烟气扩散及控制的影响。用能量方程、动量方程、连续性方程、组分方程和完全浮力修正的k-ε方程描述烟气湍流流动,用SIMPLEC算法求解。结果表明:对于2种典型结构层,在发生火灾360 s时,未安装屏蔽门的,烟气均已扩散蔓延至整个站台层的上部空间并沉降至1.8 m的安全高度,人员疏散均较为困难,安装屏蔽门的,所有疏散楼梯口均能保持正常状态,屏蔽门对烟气的扩散起到很好的阻拦作用,且排烟口和隧道排出了更多的烟气;安装屏蔽门后,岛式、侧式站台层的排烟效率分别提高15.8%和10.1%;侧式站台层的抽吸烟气作用更加明显,比岛式站台排出了更多的烟气。由此可知,在2种典型结构的站台层中安装屏蔽门,可以加强对站台层火灾时烟气的控制,为人员及时有效地疏散创造了良好的条件。  相似文献   

15.
地铁区间隧道内对乘客生命威胁最大的是火灾烟气,因此防灾的关键在于烟气控制。车头和车尾火灾时采取纵向通风能使人烟分离,但对于列车中部着火时下风侧乘客将不可避免地在烟气笼罩的环境中。提出了火灾烟气纵向分区控制模式,即利用防烟隔板将隧道划分成行驶区和疏散通道2个防烟分区,采取适当通风阻止烟气侵入疏散通道,保障人员疏散过程与烟气分离。通过1∶5隧道模型中烟气分区控制试验结果的比较分析,证实采取不同通风方式均可使疏散通道保持较高压力,使气流由疏散通道流向行驶区,以阻止火灾烟气侵入疏散通道内,但不同通风方式在高温控制及烟气控制效果上存在差异,其中以疏散通道正压送风及行驶区单侧排烟相结合的通风方式综合控制效果最好。  相似文献   

16.
运用火灾动力学模拟软件FDS,对广州某一地铁车站岛式站台端部发生5MW火灾的情况进行数值模拟研究,对比分析不同排烟模式下地铁站内的顶棚温度分布、人眼特征高度处温度、能见度、CO浓度分布以及楼梯口风速分布情况,分析其排烟效果是否满足人员安全疏散的要求。结果表明,对于顶棚温度和人眼特征高度处能见度而言,3种排烟模式都能满足要求。对于楼梯口新风风速而言,排烟口为11个的排烟模式不满足要求。比较3种模式下温度和CO浓度的扩散范围,发现排烟口为22个的排烟模式的控烟效果较好,更有利于人员的安全疏散。  相似文献   

17.
近年来,越来越多的城市轨道交通车辆基地采用了带上盖物业开发的形式。为降低风亭排出烟气对带上盖物业开发车辆基地上盖建筑的影响,提出一种车辆基地排烟风亭外部结构挡板及其工程应用方案,并通过数值模拟方法研究不同挡板形式、角度、宽度、长度及挡板与风亭间距条件下的上盖建筑处温度、CO浓度分布。研究结果表明:1)上盖建筑处的温度、CO浓度变化趋势一致,烟气中CO对上盖建筑影响大于温度,工程设计中应以CO浓度作为首要判断标准。2)上盖建筑受烟气影响程度与风亭挡板的结构形式密切相关,受挡板的引流作用与烟气自身热浮力的影响,在风亭排烟口外侧设置与风亭不相连的挡板可有效减少烟气对上盖建筑影响。3)随着挡板角度、挡板与风亭间距的增加,上盖建筑受烟气影响程度先减少后增加,建议工程中挡板角度不大于30°,挡板上沿与风亭间距介于0.4~1.6 m之间。4)随着挡板宽度与长度的增加,排烟口正前方建筑受烟气影响逐渐减少,但排烟口两侧建筑受烟气影响逐渐增加,建议工程中挡板宽度介于排烟口长度与风亭长度之间,挡板下沿与排烟口下沿齐平。  相似文献   

18.
2005年11月对北京地铁1号和2号线某典型单层岛式车站通风排烟系统的风速以及站台区域的速度场进行现场实测调查.根据实测结果并结合数值模拟的方法,对车站内的气流流动现状进行分析与评估.并在此基础上,进一步分析车站发生火灾时,不同通风排烟模式下烟气的速度场、温度场和浓度场的分布规律,提出车站火灾发生时的最佳通风排烟模式,以期为现行的地铁通风排烟系统运行方式以及将来的地铁通风排烟系统设计提供参考.  相似文献   

19.
采用火灾动力学分析软件FDS模拟空旷隧道、有车辆隧道但无隧道风和有车辆且存在隧道风3种火灾场景的烟气蔓延扩散特征,讨论和分析在纵向排烟模式和横向重点排烟模式下,由车辆行驶和通风诱导的隧道风对烟气温度分布及其扩散距离的影响。研究结果表明:对于纵向排烟模式,由车辆行驶诱导的隧道风可将烟气遏制在整个火源下游区,上游烟气扩散较少;对于横向重点排烟模式,由卫生通风形成的低速隧道风,亦可遏制部分烟气向火源上游扩散,并能有效降低上游烟气的浓度,但不如车辆行驶诱导风有效。烟气扩散距离的计算结果则表明,纵向排烟中由车辆行驶诱导的隧道风可将烟气沿上游扩散距离控制在30 m内,远小于无隧道风情形;而对下游烟气扩散情形,隧道风则显著增大下游烟气的扩散速率。在横向重点排烟中,由卫生通风形成的隧道风对遏制烟气向火源上游扩散有一定作用,但不利于火源下游集中排烟。  相似文献   

20.
对于地铁出入段线防排烟系统设计方案,常采用在靠近洞口处设置射流风机辅助排烟的方式,这种方案 中射流风机的配电成本远高于射流风机本身成本。采用 FDS 数值模拟方法,研究郑州地铁 10 号线出入段线隧道 5 种防排烟系统设计方案的隧道风速和排烟效果,并对各方案进行经济性分析。研究结果表明:作为非载客区间 的出入段线,其排烟风速低于 2 m/s 时仍可满足有组织排烟的要求;取消洞口处射流风机,仅采用出入段线所接 车站的 4 台 60 m3 /s 事故风机,仍可较好地控制该出入段线隧道火灾烟气,防止火灾烟气威胁车站的运营安全, 不影响地铁列车司机的安全撤离;条件允许时可以在出入段线靠近车站侧设置一组射流风机,用于加强排烟效果、 提高运营安全水平;同时,火源靠近车站时,靠近出入段线侧两台事故风机比其余事故风机晚启动 30 s,可以有 效改善车站隧道内烟气滞留的问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号