共查询到20条相似文献,搜索用时 15 毫秒
1.
The electric vehicle with four direct-driven in-wheel motors is an over actuated system. A three-level control strategy of electronic stability control (ESC) is proposed to achieve optimal torque distribution for four in-wheel motors. The first level is a gain-scheduled linear quadratic regulator which is designed to generate the desired yaw moment command for ESC. Control allocation is the second level which is used to distribute the desired longitudinal tire forces according to the yaw moment command while satisfying the driver’s intent for acceleration and deceleration. The associated weighting matrix is designed using the work load ratio at each wheel to prevent saturating the tire. The third level is slip ratio control (SRC) which is employed at each wheel to generate the desired longitudinal tire force based on a combined-slip tire model. Simulation results show that the proposed method can enhance the ESC performance for the test maneuvers. Since the tire model is often unknown for practical implementation, the effectiveness of the SRC is studied using the sine with dwell test. It is found that the SRC is not crucial for achieving performance similar to the proposed method with SRC, if the slip ratio can be maintained in the stable region using traction control system/anti-lock braking system. 相似文献
2.
Binbin Sun Song Gao Chao Ma Junwei Li 《International Journal of Automotive Technology》2018,19(1):121-134
Power loss optimization aiming at the high-efficiency drive of front-and-rear-induction-motor-drive electric vehicle (FRIMDEV) as an effective way to improve energy efficiency and extend driving range is of high importance. Different from the traditional look-up table method of motor efficiency, power loss optimization of the dual- motor system based on the loss mechanism of induction motor (IM) is proposed. First of all, based on the power loss characteristic of FRIMDEV from battery to wheels, the torque distribution optimization model aiming at the minimum system power loss is put forward. Secondly, referring to d-q axis equivalent model of IM, the power loss functions of the dual-IM system are modeled. Then, the optimal torque distribution coefficient (β o) between the two IMs is derived, and the theoretical switching condition (T sw) between the single- and dual-motor-drive mode (SMDM and DMDM) is confirmed. Finally, a dual-motor test platform is developed. The derived torque distribution strategy is verified. The influence of motor temperature on β o and T sw are tested, and the correction models based on temperature difference are proposed. Based on the system power loss analysis, it can be confirmed that, under low load conditions, the SMDM takes priority over the DMDM, and the controller of the idling motor should be shut down to avoid the additional excitation loss. While under middle to high load conditions, even torque distribution (β o = 0.5) is preferred if the temperature difference between the two IMs is small; otherwise, β o should be corrected based on dual-motor temperatures. The theoretical T sw derived without dealing with temperature difference is a function only of motor speed, while temperature difference correction of it should be conducted in actual operations based on motor resistance changing with temperature. 相似文献
3.
为了提升插电式混合动力汽车(PHEV)的动力系统的真实能效,从综合能效最优的角度,研究了插电式混合动力系统能量管理策略.针对系统综合效率的时变性和耦合性,建立了系统效率评价模型,对电池储存电能的效率进行评价和动态修正,以系统综合效率最优为目标,结合粒子群优化算法,构建了能量管理策略.基于GT-Suite和Simulin... 相似文献
4.
S. Y. Ko J. W. Ko S. M. Lee J. S. Cheon H. S. Kim 《International Journal of Automotive Technology》2014,15(5):815-821
In this study, a vehicle velocity estimation algorithm for an in-wheel electric vehicle is proposed. This algorithm estimates the vehicle velocity using the concept of effective inertia, which is based on the motor torque, the angular velocity of each wheel and vehicle acceleration. Effective inertia is a virtual mass that changes according to the state of a vehicle, such as acceleration, deceleration, turning or driving on a low friction road. The performance of the proposed vehicle velocity estimation algorithm was verified in various conditions that included straight driving, circle driving and low friction road driving using the in-wheel electric vehicle that was equipped with an in-wheel system in each of its rear wheels. 相似文献
5.
6.
A cooperative control algorithm for an in-wheel motor and an electric booster brake is proposed to improve the stability of an in-wheel electric vehicle. The in-wheel system was modeled by dividing it into motor and mechanical parts, and the electric booster brake was modeled through tests. In addition, the response characteristics of the in-wheel system and the electric booster brake were compared through a frequency response analysis. In the cooperative control, the road friction coefficient was estimated using the wheel speed, motor torque, and braking torque of each wheel, and the torque limit of the wheel to the road was determined using the estimated road friction coefficient. Based on the estimated road friction coefficient and torque limit, a cooperative algorithm to control the motor and the electric booster brake was proposed to improve the stability of the in-wheel electric vehicle. The performance of the proposed cooperative control algorithm was evaluated through a hardware-in-the-loop simulation (HILS). Furthermore, to verify the performance of the proposed cooperative control algorithm, a test environment was constructed for the anti-lock braking system (ABS) hydraulic module hardware, and the performance of the cooperative control algorithm was compared with that of the ABS by means of a HILS test. 相似文献
7.
8.
9.
The in-wheel motor used in electric vehicles was designed and constructed for an electric direct-drive traction system. It is difficult to connect cooling water piping to the in-wheel motor because the in-wheel motor is located within the wheel structure. In the air cooling structure for the in-wheel motor, an outer surface on the housing is provided with cooling grooves to increase the heat transfer area. In this study, we carried out the analysis on the fluid flow and thermal characteristics of the in-wheel motor for various motor speeds and heat generations. In order to resolve heat release, the analysis has been performed using conjugate heat transfer (conduction and convection). As a result, flow fields and temperature distribution inside the in-wheel motor were obtained for base speed condition (1250 rpm) and maximum speed condition (5000 rpm). The thermo-flow analysis of the in-wheel motor for vehicles was performed in consideration of ram air effect. Also, in order to improve cooling effect of the motor, we variously changed geometries of housing. Therefore, we confirmed the feasibility of the air cooling for the motors of 25 kW capacity with housing geometry having cooling grooves and investigated the cooling performance enhancement. We found that the cooling effect was most excellent, in case that cooling groove direction was same with air flow direction and arranged densely. 相似文献
10.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(1):144-173
ABSTRACTEnergy recovery is a key technology to improve energy efficiency and extend driving range of electric vehicle. It is still a challenging issue to maximise energy recovery. We present an energy recovery mode (mode A) which recovers braking energy under all situations that accelerator pedal (AP) is lifted, brake pedal (BP) is depressed, as well as AP and BP are released completely; and propose a control strategy of regenerative braking based on driver's intention identified by a fuzzy recognition method. Other two modes: (1) recovery braking energy only the BP is depressed (mode B), (2) no energy recovery, have been studied to compare with mode A. Simulations are carried out on different adhesion conditions. Recovered energy and driving range are also obtained under FTP75 driving cycle. Road test is implemented to validate simulation results. Results show that mode A can improve energy recovery by almost 15.8% compared with mode B, and extend driving range by almost 8.81% compared with mode B and 20.39% with the mode of no energy recovery; the control strategy of regenerative braking can balance energy recovery and braking stability. The proposed energy recovery mode provides a possibility to achieve a single-pedal design of the electric vehicle. 相似文献
11.
B. Wang J. H. Choi H. W. Song H. K. Choi S. H. Hwang 《International Journal of Automotive Technology》2014,15(5):835-841
Due to the increasing use of fossil fuel, carbon dioxide emission also increased and environmental problems have emerged as social issues. Accordingly, the research about electric vehicles as personal transportation has been actively performed. An electric scooter is not as complex as an automobile, but it takes a lot of time and costs to design and develop a new vehicle due to trial and error in selecting the specifications of core components according to consumer’s requirements. In this paper, a performance simulator for an electric scooter with an in-wheel motor at the rear wheel was developed and the simulation results were verified through experiments. For a longer travelling distance with the same energy source, the regenerative braking algorithm that converts kinetic energy into electric energy during braking was applied. The usefulness of the regenerative braking control algorithm was verified through various simulation results. 相似文献
12.
B. M. Duan Q. N. Wang J. N. Wang X. N. Li T. Ba 《International Journal of Automotive Technology》2017,18(2):335-344
This paper presents a calibration method of a rule-based energy management strategy designed for a plug-in hybrid electric vehicle, which aims to find the optimal set of control parameters to compromise within the conflicting calibration requirements (e.g. emissions and economy). A comprehensive evaluating indicator covering emissions and economy performance is constructed by the method of radar chart. Moreover, a radial basis functions (RBFs) neural network model is proposed to establish a precise model within the control parameters and the comprehensive evaluation indicator. The best set of control parameters under offline calibration is gained by the multi-island genetic algorithm. Finally, the offline calibration results are compared with the experimental results using a chassis dynamometer. The comparison results validate the effectiveness of the proposed offline calibrating approach, which is based on the radar chart method and the RBF neural network model on vehicle performance improvement and calibrating efficiency. 相似文献
13.
Fengchun Sun Wei Liu Hongqiang Guo 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2016,54(8):1031-1052
For an electric vehicle with independently driven axles, an integrated braking control strategy was proposed to coordinate the regenerative braking and the hydraulic braking. The integrated strategy includes three modes, namely the hybrid composite mode, the parallel composite mode and the pure hydraulic mode. For the hybrid composite mode and the parallel composite mode, the coefficients of distributing the braking force between the hydraulic braking and the two motors' regenerative braking were optimised offline, and the response surfaces related to the driving state parameters were established. Meanwhile, the six-sigma method was applied to deal with the uncertainty problems for reliability. Additionally, the pure hydraulic mode is activated to ensure the braking safety and stability when the predictive failure of the response surfaces occurs. Experimental results under given braking conditions showed that the braking requirements could be well met with high braking stability and energy regeneration rate, and the reliability of the braking strategy was guaranteed on general braking conditions. 相似文献
14.
15.
In this paper, the combined power management/design optimization problem is investigated for a fuel cell/Liion battery PHEV. Formulated as a constrained multi-objective optimization problem (MOP), the combined optimization problem simultaneously minimizes the vehicle cost and fuel consumption subject to the vehicle performance requirements. With an emphasis on developing a generic optimization algorithm to find the Pareto front for the synthesized MOP, the Pareto based multi-objective particle swarm optimization (PMOPSO) algorithm is developed, which solely depends on the concept of Pareto dominance. Three approaches are introduced to the PMOPSO method to address the constrained MOP. They are: (i) by incorporating system constraints in the original objective functions, the constrained MOP is transformed to an unconstrained MOP; (ii) to avoid being trapped in local minima, a disturbance operator with a decaying mutation possibility is introduced; (iii) to generate a sparsely distributed Pareto front, the concept of crowding distance is utilized to determine the global guidance for the particles. Finally, under the Matlab/Simulink software environment, simulation results are presented to demonstrate the effectiveness of the PMOPSO in the derivation of the true Pareto front. 相似文献
16.
介绍了键合图的基本理论和汽车动力传动系参数优化的一般方法,利用键合图理论推导汽车动力传动系参数的优化目标函数及其计算的全过程,通过对实际车辆的优化,验证将键合图理论应用到汽车动力传动系参数优化计算中是合理的。 相似文献
17.
驱动系统是电动汽车研制的关键技术之一,它直接决定电动汽车的性能。矢量控制通过坐标变换将定子电流矢量分解为转子磁场定向的两个直流分量并分别加以控制,从而实现异步电动机磁通和转矩的解耦控制,达到直流电动机的控制效果。直接转矩控制,并不需要观测转子磁链,它基于定子磁场控制磁场定向以转距作为被控量,思路清晰,手段直接。本文根据电动机矢量控制及直接转矩控制理论,结合电动汽车的实际要求,对其的现状及优缺点进行了分析及说明,介绍了改进的控制措施及发展趋势。 相似文献
18.
19.
充电接口的电子锁是电动汽车推广的前提条件之一,电子锁是电动汽车充电的安全性保证。本文介绍了国外充电接口电子锁的发展和现状,结合中国电网行业和电动汽车行业的实际情况,本文分别对国内车辆端、桩端的电子锁的应用和技术细节做了简要描述。 相似文献