首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
本文中首先基于电机等效电路模型,分析了车用内置式永磁同步电机的耗能制动状态和回馈制动状态;然后根据电机矢量控制原理,对控制电流指令进行解析,并经试验数据的验证;接着计算得到永磁同步电机最优回馈转矩曲线,并据此提出一种制动回馈能量最优的串联制动控制策略。最后针对某P4并联混合动力商用车,仿真分析了在C?WTVC、CHTC?TT循环工况和试验采集到的某段省道工况下,并联制动和所提出的串联最优制动控制策略下的百公里油耗和制动回收能量。结果表明,与并联制动控制相比,基于电机最优回馈转矩曲线的串联制动控制策略可降低油耗,并回收更多的制动能量,实现制动回收能量和燃油经济性的提升。  相似文献   

2.
混合动力电动汽车制动系统回馈特性仿真   总被引:5,自引:1,他引:5  
为了研究混合动力电动汽车(HEV)回馈制动特性,建立了用于城市公交的混合动力电动汽车复合制动系统的仿真模型,提出了回馈制动控制策略,分析了复合制动系统的工作过程,并探讨影响电动汽车制动系统可靠、安全和高效的主要因素,研究电动汽车复合制动系统优化途径。研究结果表明:回馈制动最低车速限值越小,制动能量回收率越大;从回收电动汽车能量角度分析,回馈制动比例应有一个有效范围值;在各种循环工况下,具有回馈制动功能时混合动力电动汽车城市客车单位里程的能量消耗可降低10%~25%。  相似文献   

3.
电动汽车能量回馈的整车控制   总被引:5,自引:1,他引:5  
以4种典型循环工况为例对电动汽车进行能量分析,设计了基于常规汽车制动系统的整车能量回馈控制方式,研究了控制策略,完成了车辆道路试验与标定优化。试验表明,整车能量回馈控制方式与控制策略安全、可靠,且柔顺性良好;利用能量回馈技术,蓄电池能量消耗可减少10%,能有效延长电动汽车的一次充电续驶里程。  相似文献   

4.
分析了电动汽车制动能量回馈的特点,针对电动汽车制动能量回馈时强鲁棒性的需求,设计了一种基于Sugeno模糊逻辑的制动能量回馈系统,以满足能量回馈的要求,该回馈系统提高了整车的制动性能以及续驶里程,也使整车的动力性、安全性和舒适性达到较好的平衡,文章同时估算了这种控制策略的能量回收效率。经仿真和实际测试,结果表明所提策略满足总体设计的性能指标要求。  相似文献   

5.
再生制动技术可以有效回收车辆制动能量,是提高电动汽车续驶里程的重要途径,超级电容具有高功率密度、高效率的特点,利用蓄电池-超级电容组成的复合电源作为电动汽车的储能装置可以改善电池工作状态,提高电池寿命及可靠性,并提高能量回收率。目前使用复合电源(蓄电池-超级电容)进行再生制动的电动汽车多采用并联形式,针对此类状况,基于无源串联复合电源结构设计其再生制动系统,其主要由电机、超级电容组、整流桥和控制器组成。在控制策略上,采用电压反馈恒定电流制动方式,基于脉冲宽度调制(PWM)控制,在制动过程中根据电动汽车车速与超级电容端电压实时调节PWM的占空比以实现目标制动电流恒定。在MATLAB/Simulink平台上建立再生制动系统仿真模型,验证所提控制策略的有效性,并利用某电动汽车对所设计系统进行滑行、制动等试验。研究结果表明:相比有源并联式复合电源,该系统不需要DC/DC转换器,结构及控制简单,该系统能够较好地实现制动能量回收,所采用的控制策略能够有效地实现恒电流制动,电制动减速度稳定,同时具有较高的能量回收率。  相似文献   

6.
文章以某款纯电动车制动能量回收系统为研究对象,首先,设计一种电液助力系统,阐述其结构方案和工作原理,接着基于该电液助力系统开展纯电动车串行制动能量回收系统设计研究,包括结构方案、控制方案、电气方案;实现在某款纯电动车产品上的搭载应用开发,结果表明,基于该电液助力系统的纯电动车能量回收系统,实现车辆在制动或减速阶段,机械-液压制动力与电机回馈制动力实时协调,最大限度地回收制动能量,并且获得较好的制动稳定性和“踏板感”,单个ECE循环工况经济性贡献率最高达28.9%。  相似文献   

7.
提出了一种并联式混合动力汽车防抱死制动系统(ABS)和能量回馈制动的协调控制策略。针对防抱死制动系统的强非线性和时变特征,设计了基于滑移率切换面的ABS滑模变结构控制器。为削弱传统滑模控制中的颤振和补偿模型的不确定性,采用指数趋近率方法来改善滑模运动段的动态品质和鲁棒性;能量回馈制动系统中,电池SOC、电机转速和制动强度等动态参数的影响较大,因此,采用T-S模糊逻辑控制策略动态调节电机制动转矩来提高制动能量的回收率。在Matlab/Simulink环境中建立整车制动系统模型,对所提出的协调控制策略在紧急制动和NEDC工况下进行仿真。结果表明:该策略在保证车辆制动稳定性的同时,能有效地提高制动能量的回收率,且具有较强的鲁棒性。  相似文献   

8.
当传统汽车减速或制动时,车辆运动能量通过制动系统而转变为热能释放到大气中。而新能源汽车通过制动能量回收技术转变为电能储存于蓄电池中,从而提高车辆的续驶能力。新能源汽车在制动过程中,要保证其制动稳定性和平稳性,同时要尽可能多地回收制动能量,以延长新能源汽车续驶里程。文章通过对制动能量回收系统的定义、组成及工作原理进行研究,剖析了新能源汽车电机再生制动能量回收工作过程和制动能量回收系统的制动工作过程,阐明了制动能量回收系统各部件的作用;重点围绕途观L PHEV制动系统组成、途观L PHEV制动能量回收系统混合制动工作原理,即减速请求、摩擦减速、再生减速的支持及三相电流驱动装置的支持不足4个工作过程;系统地介绍了TiguanLPHEV制动能量回收系统主要是通过控制机电式制动助力器e-BKV和蓄压器VX70实现的,驾驶员的减速请求是摩擦减速与能量回收减速的综合。  相似文献   

9.
整车控制系统是车辆的核心控制部分,其既要对驾驶员的操纵意图进行识别和判断,又要对整车运行时的关键参数进行监测和控制,同时,还要对整车的能量需求进行管理和协调。在车辆制动工况下,如果进行制动能量的回收控制,可以有效的延长续驶里程,但电动汽车在进行回馈制动时,电制动会和机械制动系统相互耦合,这一问题解决的好坏,也会影响到车辆行使的安全性。本文阐述了对制动模式下机械制与电机再生制动的协调开展研究,目标是进一步保证车辆行驶的安全性和舒适性,提高制动时的能量回收效率。  相似文献   

10.
分布式驱动电动汽车各驱动轮转速和转矩可以单独精确控制,便于实现整车动力学控制和制动能量回馈,从而提升车辆的主动安全性和行驶经济性。但车辆在回馈制动过程中,一旦1台电机突发故障,其他电机产生的制动力矩将对整车形成附加横摆力矩,从而造成车辆失稳,此时虽可通过截断异侧对应电机制动力矩输出来保证行驶方向,但会使车辆制动力大幅衰减或丧失,同样不利于行车安全。为了解决此问题,提出并验证一种基于电动助力液压制动系统的制动压力补偿控制方法,力图有效保证整车制动安全性。以轮毂电机驱动汽车为例,首先建立了整车动力学模型以及轮毂电机模型,通过仿真验证了回馈制动失效的整车失稳特性以及电机转矩截断控制的不足;然后,建立了电动助力液压制动系统模型,并通过原理样机的台架试验验证了模型的准确性;接着,基于滑模控制算法设计了制动压力补偿控制器,并在单侧电机再生制动失效后的转矩截断控制基础上完成了液压制动补偿控制效果仿真验证;最后,通过实车试验证明了所提控制方法的有效性和实用性。研究结果表明:在分布式驱动电动汽车单侧电机再生制动失效工况下,通过异侧电机转矩截断控制和制动系统的液压主动补偿,能够使车辆快速恢复稳定行驶并满足制动强度需求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号