首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
研究目的:通风管路基作为一种新型的路基结构,具有降低多年冻土地温抬升路基人为上限的性能,对多年冻土区铁路的建设及运营提供安全保证。本文结合青藏高原多年冻土区特殊的气候条件及空气流通特征,对通风管内空气对流形式进行分析,并通过传热学基本理论对多年冻土区通风管路基体的传热规律进行研究。研究结果:文章经过系统分析和研究,提出了青藏高原多年冻土区通风管路基的传热理论。认为青藏高原多年冻土区通风管路基的传热方式主要为空气的强迫对流、自然对流及热传导3种,并通过理论计算及试验得出使通风管路基达到最大功效的合理的长径比。  相似文献   

2.
研究目的:通风管路基作为一种新型的路基结构,具有降低多年冻土地温抬升路基人为上限的性能,对多年冻土区铁路的建设及运营提供安全保证.本文结合青藏高原多年冻土区特殊的气候条件及空气流通特征,对通风管内空气对流形式进行分析,并通过传热学基本理论对多年冻土区通风管路基体的传热规律进行研究.研究结果:文章经过系统分析和研究,提出了青藏高原多年冻土区通风管路基的传热理论.认为青藏高原多年冻土区通风管路基的传热方式主要为空气的强迫对流、自然对流及热传导3种,并通过理论计算及试验得出使通风管路基达到最大功效的合理的长径比.  相似文献   

3.
青藏高原多年冻土区热棒路基设计计算   总被引:3,自引:1,他引:2  
结合青藏铁路试验工程,在分析热棒路基热周转特性的基础上,建立热棒路基热工计算模型,阐述热棒路基的设计计算过程,讨论设计计算中基本参数的选取,热棒产冷量的计算,产冷量与间距、蒸发段长度、散热面积的关系,安全系数的选取。青藏铁路多年冻土区清水河试验段热棒路基的设计计算结果表明:采用直径76 mm、散热面积3.27 m2、蒸发段长度5 m的热棒,能够很好地起到保护多年冻土的作用,其产冷量达1 900 MJ。热棒的合理纵向间距应在3.5~4.0 m;安全系数在1.1~1.2。相比之下,散热面积、蒸发段长度对产冷量的影响较明显,热棒直径的影响较弱。  相似文献   

4.
青藏铁路多年冻土区路基边坡施工技术   总被引:1,自引:0,他引:1  
多年冻土区铁路路基的热状况是决定路基稳定性的关键因素,青藏线片石通风路基是按保护多年冻土的原则而设计的。文章介绍片石通风路基的施工技术及注意事项。  相似文献   

5.
青藏铁路多年冻土区普通路基地温监测及其预测分析   总被引:1,自引:0,他引:1  
青藏铁路多年冻土区局部地段以普通路基形式通过,其稳定性与铁路的正常运营密切相关。2002~2003年在北麓河布置了普通路基试验段,用于监测路基的温度状态。基于监测资料,分析路基边坡温度变化过程、路基及下部土体温度场分布以及进入多年冻土的热流量。结果表明,阳坡面年平均温度比阴坡面高2.9℃,阴坡面温度年较差比阳坡面大2.2℃。受地表温度边界条件控制,路基阳坡下土体融化深度明显大于阴坡,且路基下部土体处于升温状态。路基下部土体不同部位主要表现为吸热强度逐年略有减小的吸热状态。模拟计算50年气温升高1℃条件下路基温度场,结果表明50年后路基冻土上限下降明显,并且冻土温度主要介于0~-0.5℃之间。  相似文献   

6.
结合青藏铁路多年冻土区应用片石通风路基的工程实例,详细介绍了片石通风路基的原理、设计与施工,分析了高含冰量冻土地段采用片石通风路基这一主动保护多年冻土措施的效果.  相似文献   

7.
我国正在建设中的青藏铁路,是党中央、国务院西部大开发战略的标志性工程。由于要穿越海拔4500米以上的550多公里的地质条件复杂的多年冻土区,这项工程将成为人类挑战极端自然条件的雄伟壮举。  相似文献   

8.
多年冻土路基工程技术探索与实践   总被引:1,自引:0,他引:1  
简要总结了自上世纪六七十年代以来青藏铁路多年冻土路基工程技术探索与实践过程,认为青藏铁路多年冻土路基设计应以冻土地基稳定为核心,依据冻土年平均地温、含冰量、不良冻土现象及水文地质等,考虑全球气温升高及其他因素的影响,以科学试验为指导,采取主动保护冻土的措施动态设计,为列车快速通过高原提供技术保证。  相似文献   

9.
在多年冻土区修建铁路站场路基,打破了原来天然地表与外界的热力平衡,地下温度场将重新分布。利用测试仪器来获取测温变形数据,然后对数据进行处理,探讨站场路基的冻结和融化过程的规律,以及站场路基下温度场的变化规律。通过和普通宽度路基的对比分析,分析宽路基对路基下多年冻土的保护作用,并提出一些工程防治的建议。  相似文献   

10.
调查青藏铁路运营后多年冻土区的路基防排水设施。青藏铁路多年冻土区路基防排水设施存在并急需解决的问题是部分地段排水沟变形或破损、路基坡脚积水和防排水设施不够完善。分析防排水设施病害产生的原因和危害,对青藏铁路多年冻土区路基防排水技术措施进行探讨,建议研究开发具有刚性和柔性特点的新型结构的排水沟,对填土垫高路基坡脚的技术措施进一步优化研究。  相似文献   

11.
青藏铁路冻土路基合理路堤高度研究   总被引:6,自引:1,他引:5  
从反映冻土路基热稳定性的路堤临界高度出发,结合青藏铁路冻土路基试验工程,对青藏高原冻土路基的合理路堤高度进行现场试验研究及数值模拟研究。现场试验结果表明:路基下冻土人为上限的变化与路堤高度呈非线性关系,路堤高度太小或太大都会造成路基下多年冻土上限的下降。数值计算结果表明:在相同年平均地温条件下,路基下冻土的人为上限随路堤高度的增大而上升,随路基运行时间的增长而下降;当路堤高度大于一定数值时,在路堤建成的第1个寒季过后,路堤内会残留融化夹层,并且融化夹层的厚度随路堤高度的增加而增大;年平均地温分别为-0.3,-0.5,-1.0,-1.5,-2.0℃条件下,路堤的下临界高度分别为6.8,4.2,1.1,0.6,0.5 m;上临界高度分别为3.4,3.4,3.9,4.1,4.4 m。路堤临界高度存在的年平均地温临界值约为-0.6℃。  相似文献   

12.
青藏铁路运营期间低温冻土区片石气冷路基工程效果分析   总被引:1,自引:0,他引:1  
冻土区筑路技术问题的关键是冻土的热稳定性,这种热学问题的力学表现是路基变形。通过对青藏铁路运营期间冻土区典型地段路基地温场和路基变形特征的分析,指出青藏铁路冻土区路基地温场形态控制了长期运营期间的路基变形总量和横向差异变形总量。这些变形主要由冻土季节融化层土体的冻胀融沉变形、冻土压缩变形、冻土长期蠕变变形组成。工程监测以及理论计算证明了片石气冷路基结构保护冻土效果的长期可靠性,证明了其减少运营期路基变形,保证冻土区路基工程的长期稳定性的效果。  相似文献   

13.
青藏铁路冻土路基沉降变形预测   总被引:7,自引:1,他引:7  
青藏铁路试验工程北麓河试验段冻土路基沉降变形现场试验研究表明:即使路基下冻土人为上限有所上升,冻土路基仍会产生较大的沉降变形。这种变形主要来自原天然上限以下高温—高含冰量冻土升温引起的压缩变形。路基下多年冻土的升温幅度、高含冰量冻土层厚度和路堤高度越大,路基的沉降变形量就越大。数值计算结果表明:在路堤填土满足临界高度,且考虑青藏高原年平均气温逐年上升的条件下,青藏铁路北麓河试验段冻土路基在未来50年内的总沉降量可能达到30 cm。因此,要控制冻土路基的沉降变形,必须采取主动降低多年冻土温度的工程措施,单纯靠增加路堤高度的传统方法不能解决问题,甚至适得其反。  相似文献   

14.
刘选侠 《铁道勘察》2008,34(3):44-46
多年冻土是青藏铁路建设面临的主要难题之一.在多年冻土地区的斜坡地带往往发育有湿地等不良地质现象,对于路基修建的安全造成严重影响.描述了青藏铁路多年冻土区DK1 487 717~DK1 487 880段的路基设计情况,总结了关于多年冻土斜坡湿地地段的路基设计体会.  相似文献   

15.
青藏铁路多年冻土区的地温特征及影响因素   总被引:1,自引:1,他引:1  
郭余良 《铁道勘察》2007,33(1):61-64
根据青藏铁路多年冻土区测温工作的实践,通过对地温测试资料的统计分析,阐述了青藏铁路多年冻土区地温的分布规律,并总结了影响地温分布的各种因素。  相似文献   

16.
研究目的:拟建香日德—花石峡公路位于青海省境内,全长156.61 km,起点在香日德与G109线连接,终点至花石峡与G214线国道连接。其中K 88+200~K 156+610段长68.41 km,大部分海拔4 000 m以上,最高在挝卓依垭口,海拔4 445.647 m;本段线路位于青藏高原东部,多年冻土发育的边缘地带,本文通过勘察资料分析,得出沿线多年冻土分布特征并分析其变化规律。研究结论:通过对本段线路的勘察资料分析表明:本段多年冻土和海拔高度有很好的相关性,主要分布在挝卓依垭山垭口前后海拔4 200 m以上路段,局部海拔在4 000~4 200 m湖相沉积细粒土地段存在残余多年冻土。沿线整段多年冻土处于退化状态,且北坡较南坡年平均低温低,南坡多年冻土退化严重。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号