首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为提高纯电动汽车再生制动过程中的能量回收率,文章以某一前、后双电机驱动的纯电动汽车为对象,针对纯电动汽车再生制动过程中机械制动力与电机制动力的分配进行研究,合理的分配前、后轴上机械制动力与电机制动力各自的比例,并引入相关影响因子对电机制动力进行修正,制定了经济性控制策略,最后用Simulink和Cruise软件进行联合仿真。结果表明,采用经济性控制策略能够提高制动能量回收率,且在车速波动更为频繁的城市工况下更有利于电动汽车回收制动能量。  相似文献   

2.
孙大许  兰凤崇  陈吉清 《汽车工程》2013,(12):1057-1061
针对具有双轴双电机四驱结构的电动汽车,设计了一种基于I线制动力分配策略。该策略在制动时,前后轴制动力按照I线分配,前后电机同时回收能量,既发挥了制动能量回收潜力,又保证了制动稳定性。仿真结果表明,该策略能回收更多的能量,制动力分配曲线与I线相吻合,保证了制动稳定性,也验证了该策略的有效性。  相似文献   

3.
电动汽车驱动系统再生制动特性分析与仿真   总被引:2,自引:0,他引:2  
电动汽车行驶时对能量的需求以及延长续驶里程要求驱动电机具有再生制动能力,既可以提供制动力,又可以将制动过程中的能量回收。通过对汽车制动模式及其产生的能量进行分析。以永磁无刷直流电机系统在作电动汽车动力时实现电气制动为控制策略,仿真了回馈制动,并对仿真结果进行了分析、探讨。结果表明,再生制动的算法是可行的,能满足能量回收要求。  相似文献   

4.
对某电动汽车机电复合制动系统进行了研究,制定了电动汽车机电复合制动系统的结构方案。依据ECE-R13法规与最大电机制动力限制,确定机电解耦门限值,对小强度制动、中强度制动及紧急制动3种不同工况分别制定了不同的再生制动与液压制动控制策略,并进行仿真与试验验证。结果表明,在小强度制动时电机可满足驾驶员的需求制动力,并且能量回收率能够达到25%;在中强度制动时电机以最大制动力进行制动并且在最大回收能量的同时能够使该系统满足制动性能,能量回收率能够达到74%;在紧急制动时为了制动安全应迅速将电机制动力撤出。该复合制动系统能够有效地吸收再生制动能量,同时也能满足车辆的制动性能。  相似文献   

5.
作为新能源汽车的核心功能,能量回收对汽车的制动系统提出了新的要求。基于对同行线控制动系统产品的分析,文章设计了一款新型电子制动助力器,并从整车层面构建了电动汽车的制动能量回收控制系统,该系统包括电子制动助力器、整车控制器、电池管理器、电机控制器、防抱死制动系统(ABS)和电子稳定性控制系统(ESC)。利用Matlab/Simulink软件,以整车目标制动力、电池荷电状态(SOC)、车速和驱动电机状态参数为输入变量,以目标液压制动力和目标电机制动力为输出变量,搭建了制动能量回收控制策略模型,并将其嵌入AVL Cruise整车模型,进行联合仿真分析。仿真结果表明,控制策略具有良好的制动能量回收效果,新欧洲驾驶循环(NEDC)工况下的能量回收率达到12.8%,续驶里程贡献度达到15%。文章的研究可以为电动汽车的线控制动系统产品及其能量回收控制系统的开发提供参考。  相似文献   

6.
电动汽车能够有效利用可再生能源,具有清洁无污染特点,但受制于动力电池技术影响,存在续驶里程有限等缺陷。为保证纯电动汽车制动安全,提高制动能量回收利用率,对纯电动汽车机电复合制动系统组成及控制原理、模糊控制电机制动力分配、前后轴制动力分配的动力分配方式等方面进行讨论,并提出纯电动汽车机电复合制动能量回收控制措施。  相似文献   

7.
分析电动汽车制动能量回收的制约因素,综合汽车制动动力前、后轮制动力分配,电机制动与机械制动并行控制和电池耐受性分析,提出了制动能量回收的联合控制策略.基于Simulink和Cruise软件平台进行了系统建模和联合仿真.结果表明该联合控制策略能够实现法规制动条件下的制动能量回收,回收率达13.7%,提高续驶里程16.4%.  相似文献   

8.
本文旨在研究纯电动汽车制动能量回收的评价方法。从制动能量回收的机理入手,分析了制动能量回收系统的制动力分配和整车能量流;引入新的制动器效能因数和电机制动力分配系数的概念,推导出制动轮缸压力与制动能量之间的关系;提出了评价制动能量回收效果的3个评价指标,分别为制动能量回收率、节能贡献度和续驶里程贡献度;并进行了仿真和实车试验。结果表明,制动能量回收率可反映制动能量回收系统的节能潜力,节能贡献度能反映制动能量回收系统对整车节能的贡献度,评价指标稳定、合理。  相似文献   

9.
以能量回收最大化为目标,提出一种双电机驱动电动汽车再生制动模糊控制策略,通过分析再生制动原理,考虑ECE法规、理想制动力分配曲线、电机、电池功率等约束,利用模糊控制理论确定电机制动所占比例,在保证制动方向稳定的前提下,合理分配前、后轴制动力,协调机电复合制动力。利用MATLAB/Simulink对控制策略进行不同工况下的仿真和硬件在环试验验证,结果表明:所设计的控制策略可实现机电复合制动系统的协调工作,有效延长续驶里程。  相似文献   

10.
为了提高电动汽车制动能量的回收效率,增加汽车续驶里程,本文针对前、后轮制动力和再生制动力的分配策略进行了研究。结果表明,在制定前、后轮制动力分配策略时,采用以路面特征值识别为前提,将f线、ECE法规线和I曲线相结合的方法,根据当前路面的附着系数选择不同的控制策略,可使汽车在获得较大制动力的同时确保制动的方向稳定性;在制定再生制动力分配策略时,根据车辆实时工况,采用模糊控制的方法分配驱动轮上的再生制动力,可提高制动能量的回收效率。建立了再生制动控制策略的仿真模型,并在CYC_1015和CYC_UDDS两种工况下进行模拟仿真,仿真结果表明,本文提出的控制策略比ADVISOR原车控制策略能更好地实现制动能量回收,提高了纯电动汽车的续驶里程。  相似文献   

11.
为保证汽车制动的稳定性,并进一步提高电动汽车能源利用率,设计了以车速、动力电池荷电状态、制动强度为输入变量,以制动力分配系数为输出变量的模糊控制器,利用制动力分配系数并考虑电机、蓄电池和制动稳定性要求对能量回收的制约,提出了汽车前、后轴机械制动力和再生制动力分配策略。将开发的再生制动控制策略嵌入AVL Cruise整车仿真模型,并进行了仿真分析,结果表明,相对于沿ECE曲线的经典控制策略,该策略制动稳定性和舒适性有所提高,FTP75工况下节能贡献率提高了17.22%。  相似文献   

12.
为了研究四轮毂电机驱动电动汽车电机功率在各轴之间的匹配与回收能量多少之间的关系,采用理论分析和仿真相结合的方法,对不同匹配方案下的能量回收效果进行了对比分析。基于相关标准要求,确定了整车和动力性参数,计算整车额定功率、峰值需求功率和轮毂电机额定转速、峰值转速等,并建立了整车需求功率的二次再分模型。该模型对整车需求功率先在前/后轴之间按一定比例分配,再将各轴需求功率在左右车轮间平均分配。通过对整车制动动力学的分析,对前/后轴制动力按照理想制动力分配策略的情况,提出了电机功率在各轴之间匹配的推荐方案。基于Matlab/Simulink和CarSim软件搭建四轮毂电机驱动电动汽车联合仿真模型,采用分层取样得到多个前/后轴轮毂电机功率分配方案,研究在理想制动力分配策略下,制动强度分别为0.1,0.2和0.3,以及新欧洲运行循环(NEDC)、中国城市乘用车工况(CCDC)和纽约城市运行循环(NYCC)3种典型循环工况下不同分配方案时制动回收能量的差异,得到前/后轴轮毂电机功率最优匹配,并对最优方案动力性进行了验证。理论和仿真结果表明:当前/后轴轮毂电机功率分配比与前/后轴静态垂直载荷比相近时,电动汽车将获得最好的能量回收效果。  相似文献   

13.
为提高电动汽车制动时回收的能量,减少能源浪费,本文中提出了一种基于电子机械制动(EMB)系统的再生制动力分配策略。首先,根据制动踏板信号得到当前制动强度,结合前后轴制动力分配策略分别得到前轴、后轴制动力。然后以车速、电池SOC值和制动踏板行程为输入,再生制动占比为输出,创建模糊控制器,且以制动时回收能量最大化为优化目标,运用PSO算法优化模糊控制器。最后进行Simulink和AVL Cruise的联合仿真。结果表明,在NEDC工况下能量回收提升2.5%,在CLTC-P工况下能量回收提升1.56%。  相似文献   

14.
电动汽车再生制动控制算法研究   总被引:3,自引:0,他引:3  
李玉芳  林逸  何洪文  陈陆华 《汽车工程》2007,29(12):1059-1062,1073
以"在满足车辆制动性能要求、保证车辆制动稳定性的前提下,最大限度地回收再生制动能量"为原则,对电动汽车再生制动力与制动器制动力的分配算法进行研究,得到车辆制动时制动力的控制算法,最后以某电动车辆为例进行仿真分析。制动力分配算法对车辆再生制动和机械制动的分配规律的制定具有较好的参考作用。  相似文献   

15.
电动汽车的再生制动控制策略研究及仿真   总被引:1,自引:0,他引:1  
分析了汽车在典型循环工况下制动时前后轴上的制动力和制动能量的分配规律,以此为依据,介绍了电动汽车的三种制动控制策略,并着重分析了结构和控制都比较简单且容易实现的并行制动控制策略。通过对实例汽车的仿真分析,得知并行控制策略能回收制动能量的55%左右,目前来说在电动汽车上应用该策略较为理想。  相似文献   

16.
分析了汽车在典型循环工况下制动时前后轴上的制动力和制动能量的分配规律,以此为依据,介绍了电动汽车的三种制动控制策略,并着重分析了结构和控制都比较简单且容易实现的并行制动控制策略。通过对实例汽车的仿真分析,得知并行控制策略能回收制动能量的55%左右,目前来说在电动汽车上应用该策略较为理想。  相似文献   

17.
文章以制动能量回收控制策略为核心,展开制动能量回收系统关键技术现状分析。首先重点阐述制动能量回收前后轴制动力与电-液制动力分配原则与技术要点。其后提出电机性能、储能装置性能状态、再生制动系统结构、行驶工况四类关键因素对制动能量回收的影响,并对其关键技术的研究现状进行综合分析。最后提出制动能量回收系统未来的研究方向。  相似文献   

18.
正一、原理制动能量回收是混合动力汽车与纯电动汽车重要技术之一,也是它们的重要特点。当内燃机汽车在减速、制动时,车辆的运动能量通过制动系统转变为热能,并向大气中释放。而在混合动力汽车与纯电动汽车上,这种被浪费掉的运动能量可通过制动能量回收技术转变为电能并储存于车辆蓄电池中,并进一步转化为驱动能量。例如,当车辆起步或加速时,需要增大驱动力时,电机驱动力成为发动机的辅助动力,使电能获得有效应用。  相似文献   

19.
针对多轴分布式电机驱动车辆电液复合制动中易出现的车辆制动抖动问题,提出了一种建压阶段电机制动力修正策略和一种基于前馈-反馈的协调控制策略,分别在建压阶段和其他阶段通过协调复合制动力来解决制动抖动的问题。针对防抱死控制系统与电机制动系统共同作用时的制动矛盾,提出了一种基于PID 控制的ABS控制策略,主要通过改变电机制动力来解决制动矛盾的问题。通过TruckSim、Matlab/Simulink及AMESim联合仿真验证,制动冲击度在建压阶段下降了 20.66%,在电机退出阶段下降了 92.59%,驾驶感觉得到明显改善。而 ABS控制策略也可在保证理想滑移率的同时完成制动能量回收;结合整车制动试验,表明协调控制策略在保证制动效果良好的同时实现了制动能量回收,效果显著。  相似文献   

20.
针对分布式驱动电动汽车,提出了一种复合制动系统控制策略。采用分层的制动转矩分配控制结构,上层控制器采用滑模控制策略,对目标纵向力和横摆力矩进行求解,以满足车辆在制动时制动效能和制动稳定性的要求;下层控制器采用加权最小二乘控制,对四轮液压制动转矩和电机制动转矩进行分配,通过增大电机制动力分配的权值达到能量回收的最大化,并采用有效集算法完成目标函数的求解。在此基础上,在Simulink中建立了7自由度整车动力学模型,在对开路面的工况下进行了仿真分析,结果表明:所制定的控制策略能满足要求,在保证车辆制动稳定性的同时,最大限度回收制动能量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号