首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
4WID-EV的自动差速原理及控制策略   总被引:1,自引:0,他引:1  
针对研究四轮独立驱动电动汽车差速行驶问题时仅以动力轮为研究对象而忽略车架内力调节作用的局限性.建立含有车架内力和车轮侧向力的汽车纵向动力学数学模型.通过对模型中各车轮的受力细分,研究四轮独立驱动电动汽车的自动差速原理,并制定“次最优转矩组合”的控制策略.在ADAMS中构建该车辆虚拟样机并对其数学模型、差速性能、控制性能进行仿真验证.结果表明,数学模型准确,车辆的自动差速性能和控制性能更佳.  相似文献   

2.
电动轮驱动的轿车取消机械式差速器后,使得各车轮运动状态相互独立,为保证车辆行驶中各车轮的转速协调,必须解决差速技术问题。文章介绍了采用电动轮驱动的轿车实车差速性能试验的过程,表明电动轮控制器可适应转向行驶和车轮半径不等引起的差速工况,实现很好的差速性能,指出该电动轮控制器可以在各种工况下实现良好的自适应差速性能。  相似文献   

3.
对四轮独立驱动轮毂式电动汽车转向控制策略进行研究,建立了整车控制系统,提出了基于滑模变结构算法的转速转矩协调控制策略;基于Ackermann-Jeantand转向模型计算车辆转向所需的四轮差速,通过滑模控制器和转矩分配模块计算车辆稳定所需的四轮转矩,在车辆差速行驶的同时协调分配四轮的转矩。仿真结果表明,该控制方法简单有效,能提高电动汽车转向的稳定性和操纵性。  相似文献   

4.
樊印峰 《天津汽车》2012,(10):47-49
电动轮驱动的汽车取消了机械式差速器后,在转向行驶、路面不平及车轮半径不等3种工况下,会出现差速问题。文章进行了实车转向行驶试验和车轮半径不等时的差速试验,验证了对电动轮电机控制按转矩模式控制而转速随动以实现自适应差速的控制策略。电动轮控制器可以实现很好的差速性能,说明采用转矩控制和转速随动的策略是解决汽车电子差速问题的前提和关键。  相似文献   

5.
四轮独立驱动与转向电动汽车作为分布式电动汽车的一种,通过四个轮毂电机分别独立控制各个车轮的转角和转矩而取代了传统汽车的分动器等其他机械结构,简化了车辆的底盘结构,同时又为车辆的各种控制提供了便利条件。文章介绍了四轮独立驱动与转向电动汽车转向控制的研究背景和特点,对国内外的研究情况进行了阐述,提出四轮转向控制的发展方向。  相似文献   

6.
动力耦合装置是混合动力车辆的关键技术之一.文章以行星齿轮式动力耦合装置为研究对象,通过建立模型,从整车角度出发进行了系统仿真研究.结果表明,该动力耦合装置具有良好的综合性能,与同类型的传统燃油车辆相比,可以很好地降低燃油消耗.  相似文献   

7.
在驾驶员和车轮之间使用机械连接的前轴上,主动转向系统为驾驶员实现独立的转向行为提供一种新的可能.该系统是由齿轮齿条转向系统、一对双行星齿轮和一个电动传动装置组成,能提供一个新的自由度,使转向比随着车速的变化而发生变化,因此很好地配合了转向轮和车辆反应之间的转换行为.结果,车辆的舒适性、转向性、操作和导向稳定性都得到了优化.   ……  相似文献   

8.
本文系统的介绍了新型的速度感应式限滑差速装置-Visco-Lok,分析指出其良好的限滑转矩特性,使其可以提高车辆的牵引性能和操纵性,其不仅可以用与普通差速器配合用于轮间限滑差速装置也可用于轴间限滑差速装置。  相似文献   

9.
电动轮驱动电动汽车差速技术研究   总被引:3,自引:0,他引:3  
提出了电动轮旋转动力学方程和对驱动电机采用转矩指令控制及车轮转速随动的方法,实现电动轮系统的自适应差速。进行了转向行驶、路面不平及不同车轮半径等工况的道路试验,试验结果表明:电动轮汽车在各种工况下都能保持良好的差速性能,具有自适应差速特性。  相似文献   

10.
为提升分布式驱动车辆在转弯过程中的动力性和稳定性,对电子差速控制系统进行了研究。提出了插电式混合动力客车轮毂电机目标转矩的二次分配策略:以两侧车轮垂直载荷比为转矩分配标准的第1次目标转矩分配和以车轮滑动率进行转矩修正的第2次目标转矩分配。经试验验证,该控制策略能够很好地实现电子差速控制,且在电机转矩控制和车辆滑动率控制上具有较高的控制精度。  相似文献   

11.
Independently rotating wheels in railway vehicles could represent an alternative to standard technology as a solution to dynamic problems such as hunting instability or steering forces in curves. Among the proposed design solutions, the train with independently rotating wheels and with the most practical applications is that developed by Talgo. The Talgo technology is based on the use of a passive steering technique of the wheelset through a mechanism. The absence of automatic control systems means that a careful selection of the mechanical parameters of the vehicle is required to improve its dynamic characteristics. Aspects such as dynamic stability or the effect of vibration on passenger comfort could be analysed by extracting the modal properties of the train from mathematical models. In this article, a methodology for determining the low-frequency modal properties of articulated trains equipped with independently rotating wheels and passive steering system (Talgo-type) is proposed. The singularity of this application based on the use of non-conventional wheelsets necessarily involves the development of a specific methodology.  相似文献   

12.
This paper describes a quasistatic theory of wheelset forces for an important practical case of the wheelset rolling when one of the wheels touches the rail in two contact zones. One of these zones lies on the tread and the other on the wheel flange. For such contact the specific problem of finding the distribution of forces between the tread and flange arises. The simultaneous frictional rolling contact problems for both contact zones have been described with Kalker×apos;s non-linear theory and wheelset equilibrium equations.

The numerical results presented are for an individual wheelset on straight track, the distribution of forces being described for a wide range of loading conditions. The influence of steering on the distribution of forces has also been presented.

This theory can be easily extended for quasistatic curving of railway vehicles and may assist wear studies for vehicles with worn wheels.  相似文献   

13.
Independently rotating wheels in railway vehicles could represent an alternative to standard technology as a solution to dynamic problems such as hunting instability or steering forces in curves. Among the proposed design solutions, the train with independently rotating wheels and with the most practical applications is that developed by Talgo. The Talgo technology is based on the use of a passive steering technique of the wheelset through a mechanism. The absence of automatic control systems means that a careful selection of the mechanical parameters of the vehicle is required to improve its dynamic characteristics. Aspects such as dynamic stability or the effect of vibration on passenger comfort could be analysed by extracting the modal properties of the train from mathematical models. In this article, a methodology for determining the low-frequency modal properties of articulated trains equipped with independently rotating wheels and passive steering system (Talgo-type) is proposed. The singularity of this application based on the use of non-conventional wheelsets necessarily involves the development of a specific methodology.  相似文献   

14.
A rotating flexible wheelset model is developed and integrated into a vehicle/track dynamic model. Flexible wheelset modes with natural frequencies less than 1000?Hz are considered in the wheelset modelling. An innovation of the paper is that wheel/rail rolling contact calculation considers the effect of the wheelset flexibility and the rotating effect. By introducing two half dummy rigid wheelsets the rolling contact between the flexible wheelset and the two rails can be transformed to that between a rigid wheelset and the rails. As an extension application, the wheel OOR (Out-Of-Round) wears with the 11th, 15th, and 17th orders are used to the vehicle system dynamic model with rigid, flexible and rotating-flexible wheelset model. The results of the three models are compared to study the influence of wheelset flexibility and rotation. The ‘online searching contact method’ developed in this paper is compared with the traditional contact method with considering the rotating flexible wheelset. And then a measured OOR is used to excite the rotating flexible wheelset, the response of which is analysed and verified.  相似文献   

15.
Dynamic performance, safety and maintenance costs of railway vehicles strongly depend on wheelset dynamics and particularly on the design of wheelset profile. This paper considers the effect of worn wheel profile on vehicle dynamics and the trend of wear in the wheels as a result of the vehicle movements. ADAMS/RAIL is used to build a multi-body system model of the vehicle. The track model is also configured as an elastic body. Measured new and worn wheel profiles are used to provide boundary conditions for the wheel/rail contacts. The fleet velocity profile taken during its normal braking is also used for the simulation. Wear numbers are calculated for different sets of wheels and the results compared with each other. Outcome of this research can be used for modifying dynamic performance of the vehicle, improving its suspension elements and increasing ride quality. It can also be further processed to reach to a modified wheel profile suitable for the fleet/track combination and for improved maintenance of the wheels. A major advantage of the computer models in this paper is the insertion of the wheel surface properties into the boundary conditions for dynamic modelling of the fleet. This is performed by regularly measuring the worn wheel profiles during their service life and by the calculation of the wear rate for individual wheels.  相似文献   

16.
The source of torque ripple in a permanent-magnet synchronous motor was analysed. Based on the feedback of the rotating speed difference between the left and right wheels, the error value of torque ripple in an in-wheel motor was calculated. Next, a simulation model of active steering control of an independently rotating wheel (IRW) in an in-wheel motor was developed to investigate effects of torque ripple. The relationship between the accuracy of active steering control of an IRW in an in-wheel motor and wheel/rail profile was derived, and then the boundary conditions of active steering control were obtained. Finally, a method was proposed to improve the active steering control of an IRW by optimising the tread.  相似文献   

17.
A range of tangential forces is generated within the contact patch when a wheelset moves on the rail. These forces are intensified when incorporating curved tracks and motored axle rail vehicles [Arrus, P., de Pater, A.D. and Meyers, P., 2002, The stationary motion of a one-axle vehicle along a circular curve with real rail and wheel profiles. Vehicle System Dynamics, 37(1), 29–58]. The wheelset is subject to flange contact if an unbalanced force remains in a curve towards the high rail gauge face. The resultant force in the transverse direction includes the lateral force, the radial force, and the creep forces in addition to the effect of the frequent wheelset displacement due to the kinematic oscillation [Iwnicki, S., 2003, Simulation of wheel–rail contact forces. Fatigue Fracture Engineering Material Structure, 26, 887–900]. This article has focused on a potential variation in some of the forces cited when the wheelset is subject to backward and forward movements. A severe wear rate observed within the wheel flange region in Iranian Railways was investigated by operating a test bogie on a curvaceous track. An obvious improvement in the wear rate and wear pattern of the wheels was attained when the second test bogie encountered a bogie direction reversal procedure. This enhancement is considered in this article from the force analysis standpoint.  相似文献   

18.
A range of tangential forces is generated within the contact patch when a wheelset moves on the rail. These forces are intensified when incorporating curved tracks and motored axle rail vehicles [Arrus, P., de Pater, A.D. and Meyers, P., 2002, The stationary motion of a one-axle vehicle along a circular curve with real rail and wheel profiles. Vehicle System Dynamics, 37(1), 29-58]. The wheelset is subject to flange contact if an unbalanced force remains in a curve towards the high rail gauge face. The resultant force in the transverse direction includes the lateral force, the radial force, and the creep forces in addition to the effect of the frequent wheelset displacement due to the kinematic oscillation [Iwnicki, S., 2003, Simulation of wheel-rail contact forces. Fatigue Fracture Engineering Material Structure, 26, 887-900]. This article has focused on a potential variation in some of the forces cited when the wheelset is subject to backward and forward movements. A severe wear rate observed within the wheel flange region in Iranian Railways was investigated by operating a test bogie on a curvaceous track. An obvious improvement in the wear rate and wear pattern of the wheels was attained when the second test bogie encountered a bogie direction reversal procedure. This enhancement is considered in this article from the force analysis standpoint.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号