首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
分布式驱动电动汽车具有四轮可独立控制和响应速度快等突出优势,对增强车辆操纵稳定性、安全性和经济性具有重要的意义。但车辆是一个非线性、强耦合的系统,需研究解决各个控制器相互耦合、过驱动系统复杂性和不确定性等核心问题,这依赖于多维 (纵向、横向和垂向) 集成控制模式和容错控制。对现有研究进行分类和总结,从传统单一维度控制到多维集成控制,综述分布式驱动电动汽车的关键技术和发展现状,重点归纳了汽车动力学集成控制的多层结构及其应用,特别是集成了纵向-横向-垂向动力学的综合控制。最后对分布式驱动电动汽车动力学控制系统所面临的挑战提出了一些建议。  相似文献   

3.
为了提高分布式驱动电动汽车的经济性和续航里程,对4个轮毂电机驱动转矩优化分配问题进行研究。通过轮毂电机台架试验得到轮毂电机的驱动效率特性,分析转矩优化分配实现节约整车能耗的可行性;建立侧重提高电机效率的目标函数,使电机转矩处于电机效率Map图中的高效区;建立侧重提高电机响应速度的目标函数,减小转矩分配瞬间电流波动过大带来的能耗;基于模糊理论设计以电机效率为变量的权重函数,实时调节权重来协调2种目标函数,提出一种转矩节能优化分配方法,得到最优的轴间转矩分配系数。在后轴驱动、平均分配、优化分配3种分配方式下进行整车能耗的ECE城市循环工况对比仿真分析。结果表明:提出的节能优化分配方法通过实时优化驱动电机的转矩,避免了电机工作在转矩过大和过小的低效区,提高了整个驱动系统的能量利用率,相比于后轴驱动和平均分配整车能耗效率提高了5.91%和10.54%;实车试验验证了转矩节能优化分配算法的节能效果,优化分配相比另外2种分配方式整车能耗效率分别提高了3.66%和8.58%。  相似文献   

4.
针对分布式驱动车辆转向工况在低速下期望提高转向机动性能,高速下期望保证行驶稳定性的需求,充分考虑转向行驶内外侧车轮的转向关系以及车辆动力学,制定了适应车速变化的四轮转矩分配策略,建立了四轮轮毂电机驱动模型以及二自由度参考模型。为了改善分布式驱动转向机动性能,建立自抗扰控制器调整内外侧车轮转矩,形成合理的转速差,减小转向半径,以提高转向机动性;对于高速转向行驶稳定性的需求,通过二次规划方法优化分配各车轮驱动力矩,分析轮胎纵横向附着裕度建立目标函数,并加入附加横摆力矩和路面附着力的限制,进行车轮驱动转矩的在线优化分配,提高车辆转向行驶的稳定性;另外为避免2种控制模式转换时驱动转矩突变,根据车速和稳定性参数制定模糊规则决策2种模式的协调系数,保证2种控制模式的平滑过渡。基于CarSim和MATLAB/Simulink进行联合仿真,并搭建硬件在环平台进行试验,对所提出的方法进行验证。结果表明:在低速转向工况下,提出的分配策略能够调节内外侧车轮产生差速效果,与转矩平均分配的策略相比,转向半径有所减小,提高车辆机动性;高速转向工况下,分配策略能够保证车辆稳定转向,与未考虑稳定性控制的分配策略相比,能更好地跟踪目标轨迹,且横摆角速度控制在参考横摆角速度附近,证明了所提控制策略的有效性。  相似文献   

5.
6.
针对驱动电机正常和故障工况下分布式电动汽车的操纵稳定性问题,提出了一种结合前轮转向和驱动力重构的驱动力分配控制方法。首先基于横摆角速度与质心侧偏角设计滑模加权控制器,计算所需的附加横摆力矩;再分别建立电机正常和故障工况驱动力优化分配模型。其中,针对故障工况下驱动电机输出能力的限制,通过协同前轮转向来补偿横摆力矩。然后,基于二次规划理论求解最优驱动力分配值。最后利用Carsim和Simulink联合仿真,验证了提出的协调控制方法的有效性。结果表明,该方法可充分利用分布式驱动的冗余特性,确保分布式电动汽车在驱动电机正常与故障工况下均可满足操纵稳定性要求。  相似文献   

7.
宋强  王冠峰  商赫  张念忠 《汽车工程》2023,(11):2104-2112+2138
为改善高速低附着路面上的车辆动力学性能,本文针对分布式驱动电动汽车提出一种基于多参数控制的操纵稳定性控制策略,包括上层轨迹跟踪控制和下层转矩分配控制。上层控制器设计基于2自由度车辆模型和驾驶员预瞄偏差模型,提出了MPC轨迹跟踪控制策略,实现对侧向偏差、横摆角偏差、质心侧偏角、横摆角速度的多参数控制。下层控制器以轮胎负荷率最小为优化目标,获得4个车轮电机转矩的最优分配量,借助于7自由度动力学模型,在双移线、蛇行工况下完成了CarSim-Simulink联合仿真。结果表明:提出的控制策略改善了高速、低附着工况下的操纵稳定性和轨迹跟踪精度。  相似文献   

8.
为在保证分布式电驱动车辆制动稳定性的前提下实现经济性的提升,提出了基于深度强化学习的分布式驱动前、后轴扭矩分配策略.在建立分布式电驱动车辆关键部件物理模型的基础上,基于车辆模型及制动稳定性约束,建立了基于深度强化学习的扭矩最优分配控制模型,并对传统固定比值的扭矩分配策略和所提出的策略进行了对比,结果表明:在新欧洲驾驶循...  相似文献   

9.
分布式电驱动车辆具有控制灵活度高、传动链短、结构紧凑、传动效率高、空间布置利用率高等特点,独特的结构特点与驱动方式令其在充分挖掘车辆动力学控制潜力、增强车辆安全性、提升驱动效率、简化底盘结构等方面带来明显的技术革新,为高性能车辆控制技术提供硬件载体.然而,作为过驱动、多约束、车辆纵向-横向-垂向运动行为强非线性耦合系统...  相似文献   

10.
为改善分布式驱动电动汽车高速行驶稳定性,避免频繁驱动控制操作对汽车行驶安全性的影响,提出了一种适应不同驾驶工况的参数动态门限值算法,设计了汽车附加横摆力矩滑模控制策略和驱动力矩二次规划优化分配控制策略,并进行了角阶跃输入工况和双正弦输入工况的仿真分析。结果表明,所设计的控制策略能有效控制汽车的质心侧偏角与横摆角速度,在保证汽车行驶稳定性的前提下,使质心侧偏角与理想值偏差减小了3.6%以上,轮胎附着利用率减少19.5%以上,有效地降低了轮胎附着利用率,提高了汽车的行驶安全性。  相似文献   

11.
针对轮毂电机分布式驱动越野车辆在狭小空间快速机动的需求,设计了一种分层结构的原地转向控制策略。基于动力学原理分析了各轮载荷、附着条件对原地转向横摆速度的影响机理,并搭建原地转向运动学模型,上层采用模型预测控制算法设计原地转向理想轨迹以及期望的横摆角速度,开发基于PI滑模控制的横摆运动跟踪算法,通过补偿转向横摆力矩以提高方向角控制的鲁棒性和稳定性,下层以最优轮胎利用率为目标,设计二次规划算法优化分配各轮附加横摆力矩。dSPACE硬件在环测试结果表明,所提出的控制算法可在保证稳定性的前提下实现原地转向,大幅提高了车辆的转向机动性,在方向盘动态输入仿真中,车辆最大转弯半径为0.157 m,转向中心的最大偏移量为3.610 m;同时,驾驶员能对转向过程进行闭环控制,实现了原地转向过程中横摆速度的实时调节。  相似文献   

12.
4WD电动汽车转速闭环控制   总被引:1,自引:0,他引:1  
研究了4WD电动汽车的转速闭环控制:提出了摸型跟踪2自由度转速闭环控制策略和基于观测器的车速估算方法。介绍了该控制方法的基本原理及实现技术通过轮毂电机加载试验台的硬件在回路仿真、9自由度整车模型弯道制动及分离系数路面仿真,验证了该控制方法的有效性。  相似文献   

13.
针对某后轴制动器经改制的分布式驱动电动汽车,为保持良好的踏板感觉,以原车(改制前)的总制动特性为目标,设计了复合制动策略,包括滑行再生制动策略和制动踏板解析。考虑电机发电效率,离线计算不同前、后电机力分配系数时的总电机效率,从而根据总电机效率最高得到最优的电机力分配系数,在ECE法规和Ⅰ曲线的约束下,设计出了复合制动经济性优化策略。仿真结果表明,考虑电机发电效率进行经济性优化后,续驶里程贡献率由14.2%提高至15.4%。  相似文献   

14.
分布式驱动电动汽车可控自由度高、响应速度快、底盘线控集成度高、车辆结构紧凑,是实现先进车辆动力学控制技术的最佳平台。线控转向系统、线控驱动/制动系统、线控悬架系统等线控系统,制动防抱死系统、车道保持系统、自适应巡航系统、变道辅助系统等不同等级的辅助驾驶系统的广泛使用,造成车辆底盘控制中出现冗余及冲突。分布式驱动结构形式为多线控系统及线控系统与辅助驾驶系统间的高效、协同控制带来了更大的可能。基于此,从集成控制策略架构、纵-横向动力学集成控制、横-垂向动力学集成控制、纵-垂向动力学集成控制、纵-横-垂向动力学集成控制、容错控制、分布式驱动智能电动汽车底盘动力学集成控制等方面重点阐述分布式驱动电动汽车底盘集成控制技术的最新进展。通过对文献分析总结可以看出:基于分层式控制架构的分布式驱动电动汽车动力学集成控制是当前研究重点;一体化集成控制目标、高级辅助驾驶系统与底盘控制系统深度融合及个性化集成控制等问题亟待解决。研究成果能为分布式驱动电动汽车底盘高性能集成控制技术发展提供参考。  相似文献   

15.
16.
邱泉 《汽车电器》2022,(10):35-38
针对分布式驱动电动汽车转向工况下系统参数摄动以及外界环境干扰影响车辆横向稳定性的问题,以横摆角速度为控制量,设计模糊滑模控制算法,得到车辆维持稳定所需的附加横摆力矩并进行分配。基于CarSim与Simulink联合仿真,验证所提出的横向稳定控制算法能够有效地提高车辆的横向稳定性,减轻驾驶员操作负担。  相似文献   

17.
为了较准确地获取分布式电动汽车的状态信息,满足汽车稳定性控制的要求,文章以三自由度车辆动力学模型为基础,建立了基于无迹卡尔曼滤波的分布式电动汽车状态观测器,对双移线工况下分布式汽车的纵横向车速、横摆角速度、质心侧偏角进行了预测估计。  相似文献   

18.
为提高轮毂电机驱动电动汽车在高速、低附着等危险工况下的侧向稳定性,提出一种基于Nash博弈的协同控制策略,采用上下双层控制结构进行稳定性控制策略的设计。上层引入Nash博弈协调控制策略决策前轮转角和附加横摆力矩,跟踪期望横摆角速度和质心侧偏角;下层根据轴荷比例分配四个车轮的驱动力矩。并在CarSim/Simulink的联合仿真平台进行危险工况下双移线仿真试验,结果表明,相比于只进行主动前轮转向控制,在潮湿沥青路面以75km/h行驶时,采用基于Nash博弈的协调控制策略横摆角速度最大误差为2.25°,侧向速度最大误差为0.12 m/s,且保持良好的路径跟踪性能;通过适当协调主动前轮转向(AFS)和直接横摆力矩控制(DYC)的动作,文章所提出的控制策略可以有效地提高横向稳定性,保证车辆在危险行驶工况下正常行驶。  相似文献   

19.
为在驱动转向复合工况下有效抑制分布式驱动电动汽车的纵滑、侧滑,提出了一种面向驱动转向复合工况的分布式驱动稳定控制架构,设计基于横摆角速度和侧偏角跟踪控制的横摆控制策略和基于滑转率跟踪控制的驱动防滑控制策略,同时根据转向稳定状态对目标滑转率进行调节,根据车辆行驶状态对横摆控制与驱动防滑控制输出扭矩进行协调优化,以实现车辆...  相似文献   

20.
提出一种分布式驱动电动车动力系统,该车前轴采用集中式驱动电机,后轮采用两个轮毂电机驱动,实现车辆的两驱和四驱行驶模式。为保证车辆在不同工况下平稳行驶,提出基于滑转率均衡控制的扭矩分配策略,来获得车辆转弯时的最佳驱动与制动能力,并对电池充放电功率进行合理限制来保证电池的使用寿命。根据样车的道路试验结果显示,电机扭矩能够根据方向盘转角实时地进行扭矩调整满足车轮差速控制,根据试验结果得知,车辆操纵稳定性的各项指标均能满足需求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号