首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为全轮独立电驱动车辆提出一种双重转向的控制策略,设计了双重转向的总体控制结构.它是包括三自由度参考车辆模型、横摆力矩确定层和转矩分配层的分层控制体系.在横摆力矩确定层中,设计了基于PID的横摆力矩控制策略;在转矩分配层中,设计了基于纵向驱动力总和不变的转矩分配策略.在此基础上,开发了双重转向控制策略仿真平台,进行了仿真分析和实车试验,试验结果与仿真结果吻合度较高,表明所提出的双重转向控制策略对减小车辆转向半径有明显效果.  相似文献   

2.
针对装有轮毂电机的分布式驱动车辆,设计了一种车辆稳定性控制系统,该系统包括上层附加横摆力矩决策和下层转矩分配2个层次.基于滑模控制理论设计了上层β-ω联合控制器,并用修正的五参数菱形法划分车辆相平面的稳定域,基于此设计稳定度指标进行失稳判断与控制比例分配,下层基于动态载荷理论分配附加横摆力矩,优化了控制分配效果,在MA...  相似文献   

3.
通过车体冲击度对驾驶员驱动意图进行识别,并结合车辆的加速度确定了基于模糊控制的车辆驱动转矩补偿系数求解方法,在满足驾驶员需求的条件下,通过转矩补偿系数对电机补偿的发动机迟滞转矩进行优化,建立了基于工况的驱动意图识别转矩补偿控制策略。利用硬件在环平台在NEDC工况下对所制定的转矩补偿控制策略进行仿真分析,结果表明,在同等油耗条件下,所制定的转矩补偿策略与没有加入驱动意图识别的转矩补偿策略相比,电池SOC增加了2.1%。  相似文献   

4.
基于控制分配的四轮独立电驱动车辆驱动力分配算法   总被引:3,自引:0,他引:3  
针对目前四轮独立电驱动车辆研究中尚未有效解决的系统失效控制问题,提出了一种基于控制分配的驱动力分配算法.首先建立了满足车辆经济性要求的目标函数和相关约束条件,通过优化保证在正常驱动状态下整车具有最佳的经济性能.接着基于控制分配原理对故障电机驱动转矩进行约束处理,使目标转矩能够在多种失效情况下实现再分配,有效解决了多驱动电机系统失效控制问题.最后,仿真结果验证了所提出的算法能在安全约束下有效地改善车辆的经济性,并系统地提升了车辆应对故障的能力.  相似文献   

5.
为提高电动汽车的操纵稳定性,建立了3层的控制策略。动力学建模层计算变量实际值和期望值;补偿力矩确定层结合可拓控制与滑模控制的优势,建立自适应滑模算法,协调各参数控制的权重并确定合适的补偿力矩;车轮转矩分配层对补偿力矩提供约束后将其分配给4个轮毂电机。采用Carsim和Simulink软件进行模型搭建和联合仿真。仿真结果表明,整车控制策略的实时性和自适应性好。最后,在样车上进行快速原型试验也验证了所采用的控制策略达到了改善车辆稳定性的预期目标。  相似文献   

6.
分布式驱动结构给车辆动力学控制带来机遇和挑战,如何可靠地实现其横向稳定性控制是关键技术。考虑车辆参数的不确定性,提出了基于区域极点配置的轮毂电机驱动汽车横向稳定性控制策略,分析了保性能权重矩阵参数对控制性能的影响;为了能最大限度地利用路面附着能力,利用轮毂电机驱动力和制动力共同产生横摆力矩,并结合驱动模型切换提出了规则化转矩分配控制策略;通过数值仿真和硬件在环仿真开展了控制系统的性能分析。结果表明,所提出的基于区域极点配置的上层控制策略不仅能改善汽车的操纵稳定性,而且对轮胎侧偏刚度等参数不确定性具有较强的鲁棒性;同时,下层规则化转矩分配控制策略能确保在低附着路面可靠实现转矩分配。  相似文献   

7.
分布式驱动电动汽车各驱动轮转速和转矩可以单独精确控制,便于实现整车动力学控制和制动能量回馈,从而提升车辆的主动安全性和行驶经济性。但车辆在回馈制动过程中,一旦1台电机突发故障,其他电机产生的制动力矩将对整车形成附加横摆力矩,从而造成车辆失稳,此时虽可通过截断异侧对应电机制动力矩输出来保证行驶方向,但会使车辆制动力大幅衰减或丧失,同样不利于行车安全。为了解决此问题,提出并验证一种基于电动助力液压制动系统的制动压力补偿控制方法,力图有效保证整车制动安全性。以轮毂电机驱动汽车为例,首先建立了整车动力学模型以及轮毂电机模型,通过仿真验证了回馈制动失效的整车失稳特性以及电机转矩截断控制的不足;然后,建立了电动助力液压制动系统模型,并通过原理样机的台架试验验证了模型的准确性;接着,基于滑模控制算法设计了制动压力补偿控制器,并在单侧电机再生制动失效后的转矩截断控制基础上完成了液压制动补偿控制效果仿真验证;最后,通过实车试验证明了所提控制方法的有效性和实用性。研究结果表明:在分布式驱动电动汽车单侧电机再生制动失效工况下,通过异侧电机转矩截断控制和制动系统的液压主动补偿,能够使车辆快速恢复稳定行驶并满足制动强度需求。  相似文献   

8.
针对分布式驱动车辆转向工况在低速下期望提高转向机动性能,高速下期望保证行驶稳定性的需求,充分考虑转向行驶内外侧车轮的转向关系以及车辆动力学,制定了适应车速变化的四轮转矩分配策略,建立了四轮轮毂电机驱动模型以及二自由度参考模型。为了改善分布式驱动转向机动性能,建立自抗扰控制器调整内外侧车轮转矩,形成合理的转速差,减小转向半径,以提高转向机动性;对于高速转向行驶稳定性的需求,通过二次规划方法优化分配各车轮驱动力矩,分析轮胎纵横向附着裕度建立目标函数,并加入附加横摆力矩和路面附着力的限制,进行车轮驱动转矩的在线优化分配,提高车辆转向行驶的稳定性;另外为避免2种控制模式转换时驱动转矩突变,根据车速和稳定性参数制定模糊规则决策2种模式的协调系数,保证2种控制模式的平滑过渡。基于CarSim和MATLAB/Simulink进行联合仿真,并搭建硬件在环平台进行试验,对所提出的方法进行验证。结果表明:在低速转向工况下,提出的分配策略能够调节内外侧车轮产生差速效果,与转矩平均分配的策略相比,转向半径有所减小,提高车辆机动性;高速转向工况下,分配策略能够保证车辆稳定转向,与未考虑稳定性控制的分配策略相比,能更好地跟踪目标轨迹,且横摆角速度控制在参考横摆角速度附近,证明了所提控制策略的有效性。  相似文献   

9.
轮毂电机驱动车辆各轮转矩精确可控且响应迅速的特点适用于越野工况,但越野路面起伏不一且附着条件多变,因此,开发基于越野工况辨识的车辆驱动力控制策略,对提升轮毂电机驱动车辆的纵向行驶稳定性具有重要意义。基于动力学模型分析路面附着与路面几何特征,确定可用于越野工况辨识的车辆特征参数集;针对车轮悬空垂向载荷估计失真现象,且由于地面垂向力的实际变化导致车辆垂向载荷分配比例的改变,修正了垂向载荷的计算;利用各特征参数的差异与越野工况的映射关系判定工况属性,采用模糊识别法界定4种地形工况;驱动力控制上层考虑工况与驾驶员影响因素,通过越野工况辨识结果决策驱动利用系数,作为前馈期望转矩调节权重;中层通过四轮垂向载荷得到转矩分配系数,设计驱动力分配算法;下层针对车辆在越野工况下出现车轮滑转与悬空状态,对车轮进行动态转矩补偿。仿真测试与实车验证表明,越野工况辨识结果与预期相符,驱动力控制策略综合优化了车辆稳定性和动力性。  相似文献   

10.
针对分布式驱动电动汽车制动安全性和制动能量回收兼顾的问题,研究了基于NSGA-II多目标优化算法的车辆制动转矩分配控制策略。建立基于模糊控制的优化集筛选模块,根据车速以及需求制动转矩从Pareto前沿优化集中确定最优转矩分配系数。以某款乘用车为研究对象,基于MATLAB/Simulink和VPAT搭建制动转矩分配控制策略模型进行仿真,并搭建硬件在环仿真平台,对算法的实时性和有效性进行了验证。结果表明:WLTC工况下,基于NSGA-II的制动转矩分配的控制策略制动转矩分配系数更加接近理想I曲线对应的分配系数,电机制动高效区工作点提高了9.51百分点,再生制动能量回收率提升4.71百分点。  相似文献   

11.
分布式驱动电动汽车可以实现四轮转矩分配和差动转向,提升整车的动力学控制性能和经济性,但是四轮转矩独立可控的特点也对功能安全提出挑战。当前轮单侧电机出现执行器故障失效情况时,不仅会产生附加横摆力矩降低车辆安全性,差动转向功能的存在还会使车辆严重偏航。基于此,在设计分布式驱动-线控转向一体化底盘的基础上,基于功能安全提出一种分布式驱动电动汽车前轮失效补偿控制策略。首先建立分布式驱动失效动力学模型,分析前轮失效对车辆状态的影响机理,发现单一的驱动转矩截断控制无法满足车辆状态修正需求;其次设计一套备用的线控转向结构,通过变截距滑模控制算法提高切换状态下线控转向系统的转角跟踪性能,并用台架试验验证跟踪的准确性;然后设计自适应失效诊断观测器实时诊断驱动系统的电机故障,在将对应轮进行驱动转矩截断后,通过模型预测控制算法对车轮转矩重新分配实现纵向和侧向的状态跟踪;最后通过仿真和实车试验验证所提失效补偿控制策略的有效性和可用性。研究结果表明:分布式驱动电动汽车前轮单侧电机失效后,备用的线控转向系统能及时矫正前轮转角,所提出的失效补偿控制策略能够快速恢复车辆的稳定性和路径跟踪能力。  相似文献   

12.
本文研究通过直接横摆力矩控制来提高分布式驱动电动汽车稳定性问题。针对充分发挥四轮独立驱动电动汽车各电机独立可控的特点来提高车辆稳定性的问题,提出了基于滑模变结构控制原理的车辆稳定性分层控制策略。其中,以横摆角速度和质心侧偏角为控制变量,设计了上层附加横摆力矩层。考虑地面附着条件和电机外特性约束,设计了下层动态转矩分配层。通过Simulink与Carsim联合仿真表明,所设计控制策略提高了车辆的稳态行驶能力,增强了车辆的横向稳定性,控制策略行之有效。  相似文献   

13.
基于分布式驱动电动客车的特点,采用基于分层控制架构的转矩矢量控制策略。策略上层设计基于LQR的直接横摆力矩控制算法,下层设计基于经济性和稳定性的转矩分配控制策略。并进行实车验证。  相似文献   

14.
为实现轮毂电机驱动越野车辆在附着条件多变、路面起伏不定的复杂环境中动力性和稳定性的多目标优化,提出一种基于路面影响因子的自适应转矩控制策略。以滚动阻力差异、空气阻力归一化比例、坡度阻力归一化比例、路面附着差异方差以及最小路面附着系数5个特征参数作为输入,并基于模糊理论方法搭建路面影响因子五参数辨识模型。基于辨识出的路面影响因子,开发整车动力性和稳定性多目标优化自适应转矩控制策略,构建了三层式控制架构:顶层引入路面影响因子对加速度紧迫程度进行判定,采用模型预测控制算法得到期望总驱动力;中层为目标决策层,以最优滑转率为目标决策驱动防滑力矩,并基于路面行驶阻力,决策期望前馈补偿力矩;下层为转矩分配层,以需求总驱动力及轮胎利用率作为控制目标,引入路面影响因子优化两者权重系数,以多约束条件的混合优化算法对转矩进行自适应控制。利用Matlab/Simulink-CarSim联合仿真平台进行仿真,基于实车进行验证。结果表明,在低附着路面,在0.2 s内快速完成滑转率抑制;在对开路面,侧向位移接近0;在大扭曲路面,避免腾空车轮出现大滑转率,滑转率最高0.2。  相似文献   

15.
根据驱动电机系统在纯电动轿车中的应用特性,在复杂工况下,对整车行驶过程中的转矩需求值、速度变化值等参数进行分析,基于模糊控制算法思想,模拟道路路况和驾驶员意愿,线性化调节扭矩补偿值,有效抑制车辆的低速抖动,提高车辆的行驶平稳性。  相似文献   

16.
为了解决纯电动汽车动力性和操控性难以同时兼顾的问题,将驾驶员意图分为稳态意图和动态意图,稳态意图用于保证车辆的操控性,动态意图用于保证车辆的动力性,在此基础上提出了一种基于驾驶员意图识别的纯电动汽车动力性驱动控制策略,该策略首先分别采用“典型工作点+分段插值”和模糊推理方法来识别驾驶员的稳态和动态意图;接着采用“动态补偿转矩保持”和“动态补偿转矩归零”等算法计算动态补偿转矩;最后通过“增量式”动态补偿转矩跟踪算法和电机过载管理算法给出最终的转矩指令。仿真与试验结果表明,该策略既可以根据驾驶员稳态意图保证车辆的操控性,也可根据驾驶员动态意图提高车辆的动力性。  相似文献   

17.
《汽车工程》2021,43(9)
为了提高多轮分布式电驱动车辆在复杂机动环境下的转向能力,设计了一种基于直接横摆力矩控制的双重转向系统。该控制系统采用分层结构,上层为横摆力矩决策层,下层为驱动力分配层。在控制系统上层,基于无迹卡尔曼滤波和递归最小二乘结合算法进行路面辨识;根据车辆状态信息和路面条件自适应调节滑移转向比,由车辆动力学模型和滑移转向比确定双重转向参考模型;针对滑模面附近非连续特性造成的控制信号抖动现象,将滑模控制算法进行改进,设计了滑模条件积分控制器,使车辆实际横摆角速度追踪双重转向参考模型计算出期望横摆角速度。系统下层在保证车辆总驱动力的前提下,基于控制分配规则将上层广义目标控制力需求分配至各执行器。最后,利用硬件在环实时仿真平台进行控制策略验证。结果表明,分层控制系统较好地实现了路面识别功能和车辆双重转向功能,针对不同路面工况对车辆进行了有效地行驶控制,减小了车辆在狭小弯曲地区的转弯半径,抑制了车辆状态参数及电机转矩的颤振和抖动,改善了车辆小半径行驶的转向机动性和高速行驶稳定性。  相似文献   

18.
Strategy of Acceleration Torque Compensation Control for Electric Vehicle   总被引:1,自引:0,他引:1  
为了解决电动汽车在急加速和急起动时电机输出动力不足难以满足驾驶员对动力需求的问题,在对汽车加速过程力矩特性分析的基础上提出了一种加速转矩补偿控制策略.该策略可在线性稳定的驱动力矩控制策略的基础上确定基本驱动力矩.采用模糊控制算法开发了以加速踏板开度及其变化率为输入、目标扭矩增量为输出的驾驶员意图表达控制器.在此基础上设计了加速转矩补偿算法用于计算补偿扭矩.最终确定了驾驶员的转矩需求并向电机驱动系统发出了转矩控制指令.仿真结果表明,该控制策略能够显著提升电动汽车的加速性能.  相似文献   

19.
针对分布式驱动电动汽车,提出了一种复合制动系统控制策略。采用分层的制动转矩分配控制结构,上层控制器采用滑模控制策略,对目标纵向力和横摆力矩进行求解,以满足车辆在制动时制动效能和制动稳定性的要求;下层控制器采用加权最小二乘控制,对四轮液压制动转矩和电机制动转矩进行分配,通过增大电机制动力分配的权值达到能量回收的最大化,并采用有效集算法完成目标函数的求解。在此基础上,在Simulink中建立了7自由度整车动力学模型,在对开路面的工况下进行了仿真分析,结果表明:所制定的控制策略能满足要求,在保证车辆制动稳定性的同时,最大限度回收制动能量。  相似文献   

20.
针对分布式驱动车辆系统非线性的特性,提出一种基于最优转矩矢量控制的车辆侧向稳定性控制系统。首先使用魔术公式轮胎模型实时估计轮胎力,搭建轮胎侧偏刚度变化的非线性车辆模型。接着借鉴近似线性二次型规划的最优控制思想,设计基于质心侧向加速度的增益可调的横摆转矩控制方法,并根据驱动电机峰值转矩和轮胎摩擦圆的约束条件进行转矩矢量分配。最后进行Car Sim和Lab VIEW联合仿真和硬件在环实验。结果表明,控制系统能对车辆进行有效的实时控制,在显著改善车辆稳定性的同时不严重影响车辆的纵向性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号