首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
烈山湖桥是随县厥水河上一座特大桥,该桥主桥采用(42+168+42)m三跨中承式钢桁架拱桥。该文主要介绍了该桥的结构设计、结构分析等,为类似桥梁设计提供参考。  相似文献   

2.
李少骏  徐伟  李镇  王恒 《桥梁建设》2022,(1):139-144
常泰长江大桥天星洲和录安洲两座专用航道桥为刚性梁钢桁拱桥,跨度布置均为(168+388+168)m,主梁采用2片主桁双层板桁组合结构,N形桁式,焊接整体节点构造,主拱采用与主梁反向的N形桁.针对该桥施工难点,进行钢梁安装方案设计.主桁杆件采用整体节点散拼,联结系采用单根杆件拼装,每节间的桥面板分为3块安装;边跨钢梁在临...  相似文献   

3.
为确定常泰长江大桥合理的桥跨布置方案,对桥位处的河床演变进行分析与预测,综合考虑工程河段河道条件、航道条件及通航环境等因素,分析论证大桥的通航孔布置及墩位布设方案.经分析论证,最终桥位跨长江主航道采用主跨1176 m、边跨490 m的桥型方案;天星洲左汊及录安洲右汊采用主跨388 m、边跨168 m的桥型方案.所采用的...  相似文献   

4.
济南凤凰黄河大桥位于济南市东北部,工程全长约6683 m,其中跨黄河段桥梁长3788 m,跨南水北调及邯胶铁路联络线桥长1323 m.结合地理位置、建设条件、景观等各方面因素,主桥采用70 m+168 m+428 m+428 m+168 m+70 m三塔组合梁自锚式悬索桥,水中引桥采用等高连续组合梁桥,跨大堤引桥采用变高连续组合梁桥,其它桥梁均采用预应力混凝土连续梁桥.项目于2018年10月开工,预计于2021年10月建成通车.  相似文献   

5.
为了解混凝土连续梁与悬索组合桥结构体系的受力特性,建立(70+185+70)m混凝土连续梁与悬索组合桥全桥有限元模型,计算其结构内力,分析垂跨比、边中跨比、主梁抗弯刚度对该组合结构力学性能的影响,并与同等跨径自锚式悬索桥进行对比.结果表明:混凝土连续梁与悬索组合桥主缆拉力和跨中挠度均小于同等跨径自锚式悬索桥,活载作用下...  相似文献   

6.
为研究公铁两用斜拉桥的力学性能,以沪通长江大桥主航道桥[(140+462+1 092+462+140)m双塔斜拉桥]为对象,采用空间板梁单元法建立全桥有限元模型,对边跨支点数量、边中跨比、主梁高跨比和宽跨比、塔梁高跨比等设计参数进行分析。结果表明:边跨设置辅助墩可改善结构受力、提高桥梁整体刚度;边中跨比增大使结构总体刚度减小,活载塔底顺桥向弯矩增大;主梁高度增大可提高结构整体刚度,但提高幅度有限,同时对恒、活载拉索应力的影响也较小;主梁宽度增大使横弯基频增大、竖弯基频减小,扭频先减小后增大而后趋于平稳,结构颤振稳定性提高;塔高增大使结构竖向刚度增大而索塔纵向刚度降低,活载塔底顺桥向弯矩减小,恒、活载拉索应力减小。  相似文献   

7.
泰国干乍那披色桥为双塔双索面钢-混凝土组合梁斜拉桥,跨越昭披耶河,主跨500 m,主桥全长951m。桥墩采用A形空心钢筋混凝土结构;承台采用哑铃形预应力混凝土结构;基础采用钻孔灌注桩基础;斜拉索共168根,采用15.7 mm单股平行镀锌钢绞线。主跨主梁由临时塔支承,并由吊机起吊安装,边跨桥墩上主梁由吊机起吊安装;塔柱采用自爬模法施工,锚固区采用自爬模板和塔吊施工;斜拉索按照等张力法张拉。介绍该桥主要结构设计与施工。  相似文献   

8.
三角塘沪昆铁路跨线桥全长660 m,其中第4联主桥为三跨预应力混凝土连续梁桥结构,采用挂篮悬臂浇筑法施工上跨韶山灌渠。运用有限元软件对其连续梁桥进行计算,分析不等跨连续梁结构受力特点,得出几点结论,可用以指导不等跨连续梁桥结构的施工图设计。  相似文献   

9.
何庭国  鄢勇 《桥梁建设》2006,(Z2):26-29
遂渝铁路新北碚嘉陵江大桥为(94 168 84)m三跨预应力混凝土连续刚构双线桥。介绍该桥通航论证、主墩位置确定、桥式方案比较、结构设计及相关技术研究情况。  相似文献   

10.
为保证波形钢腹板刚构-连续组合体系桥的合龙精度,以(55+4×100+55) m波形钢腹板刚构-连续组合桥——文泰高速珊溪大桥为背景,采用MIDAS Civil软件建立该桥施工阶段有限元模型,分析不同合龙顺序和体系转换时机对桥梁结构位移及应力的影响。结果表明:合龙顺序和体系转换时机对主梁成桥应力影响较小,对主梁成桥竖向位移、主墩墩顶成桥水平位移影响显著;珊溪大桥采用“边跨→次边跨→中跨”的合龙顺序,并在中跨合龙后进行体系转换,有利于全桥线形控制、改善主墩受力状态。采用上述合龙顺序和体系转换时机,该桥次边跨及中跨合龙时的高差控制在10 mm以内;成桥线形实测值与理论值最大相差17 mm,该桥的合龙实施效果较好。  相似文献   

11.
柳州双拥大桥为国内首座大跨地锚式单主缆悬索桥,创新性地采用了独特的非相似等腰三角形截面所形成的A形钢塔。对该桥塔结构构造和受力行为进行的系统研究表明:该桥塔结构形式的景观效果和受力性能良好;塔底采用承压板-拉杆形式的钢混连接结构具有受力明确、施工便利的优点,塔顶需重点解决不同于双缆悬索桥的索鞍巨大竖向力向2个塔柱有效传递的构造问题。  相似文献   

12.
简述了拉萨柳梧大桥概况及其主桥上部结构(主、副拱)的施工.根据施工特点确定了施工监控的主要内容:主跨基础桩身应力监控、主桥线形监控、应力监测、吊杆内力监测.采用空间有限元分析方法时施工阶段进行了验算,并对施工工序进行了优化.结果表明,内、外拱吊杆的张拉顺序和吊杆内力控制值对各施工阶段以及成桥后拱桥结构状态影响较大;结构特点决定了线形、应力和吊杆内力在施工过程中变化频繁,施工监控中应对桥梁动态跟踪;主桥预拱度设置合理,施工阶段的理论值和实测值吻合,各项监控内容均达到了预期效果.  相似文献   

13.
以营口辽河公路大桥为背景,对斜拉桥的抗震性能进行研究.从斜拉桥的抗震分析方法和动力分析模型入手,研究斜拉桥的结构动力特性,用斜拉桥地震响应的反应谱法和时程积分法分析计算.动力特性分析结果表明初始索力和重力对结构的动力特性的计算结果影响很小.对于大跨度斜拉桥至少取前30个振型进行反应谱分析才合理.在3个方向的地震作用下,采用反应谱法计算,斜拉索的地震力较小,静内力加动内力均小于索的设计值,索始终保持弹性工作,且无松弛现象.以全飘体系顺桥向+竖向输入地震波进行时程分析,计算出塔根部支座反力、辅助墩及边墩支座反力、节点位移最值、拉索单元轴力最大值,并绘出顺桥向和竖向EL-centro地震波时间历程曲线图.  相似文献   

14.
在分析中承式钢管混凝土拱桥常用桥道系结构形式特点的基础上,首次提出一种新型的桥道系结构形式———简支连续组合桥道系,并运用大型结构有限元分析软件MSC Nastran进行数值仿真计算,研究不同桥道系结构形式对桥梁结构静、动力特征的影响。通过对比分析发现:不同桥道系结构形式对钢管混凝土拱肋的受力性能、结构的整体稳定性及动力性能的影响没有显著差异;简支连续组合桥道系较好地继承了简支和连续桥道系的优点,是中承式钢管混凝土拱桥的合理桥道系结构形式。  相似文献   

15.
漭街渡大桥主桥设计跨径为116 m 220 m 116 m的超高墩大跨预应力混凝土连续刚构桥,其中主墩高168 m,水库正常蓄水后主墩将有166 m被淹没。重点介绍了大桥方案的设计构思、桥跨布置以及结构设计。  相似文献   

16.
提出一种新型桥梁结构形式——高性能钢管混凝土组合桁梁桥。从结构性能方面阐述该组合桁梁桥高效传力机制、高性能结构构件及节点力学性能,从预制件划分、存放、运输、拼接方面阐述组合桁梁桥高效装配施工性能,从防灾性能方面对组合桁梁桥与混凝土梁桥进行抗震性能有限元对比分析,从耐久性能、可维护性能及环保性能方面论述组合桁梁桥良好的服役性能。结果表明:高性能钢管混凝土组合桁梁桥各杆件受力明确,杆件材料利用率高,结构刚度大,当结构跨径达到80 m时,用钢量指标仍在400 kg·m-2以下;PBL加劲型等宽钢管混凝土节点可有效改善节点传力性能、静力破坏模式及抗疲劳性能;PBL加劲型矩形钢管混凝土构件可改善钢混界面传力及钢管局部屈曲性能,有效提高构件承载力;组合桁梁桥主桁单元、桥面板单元、桥墩单元可在工厂标准化生产,预制构件单元质量可控,现场装配速度快,施工周期短;与混凝土箱梁桥相比,组合桁梁桥结构体系地震响应内力下降显著,反应谱分析中纵桥向墩底弯矩与剪力下降达94.0%、81.2%,时程分析中纵桥向墩底弯矩下降达91.6%;采用可更换桥面板构件、桥墩系梁构件使组合桁梁桥全寿命周期性能优异。可见,矩形钢管混凝土组合桁梁桥是一种装配式高性能桥梁结构体系,可为中国中等跨径公路装配化桥梁设计提供参考。  相似文献   

17.
张爱军 《公路工程》2021,(1):225-231
为了探究波形钢腹板组合箱梁桥的抗震性能,为类似工程的抗震设计提供技术支持,以某组合梁桥为例,首先介绍了时程分析方法的理论,然后利用Midas Civil有限元软件,对该组合梁桥在不同方向地震波影响下的位移和内力情况进行了数值模拟研究.成果表明:Nemark法的实质是对线性加速度法的修正和改进,该方法对结构力学模型进行了...  相似文献   

18.
对多跨空间异型刚梁柔拱组合体系无推力拱桥进行有限元建模分析,基于振动法对吊杆索力进行检测,通过理论索力与实测索力的对比,分析该类复杂结构桥梁索力的受力规律。同时,基于历年桥梁索力检测结果,研究索力随外部荷载改变时的变化特征,对桥梁索力在长期运营状态下的健康状态进行安全韧性分析。通过测试桥梁的自振特性,分析桥梁结构整体性能,为评价桥梁工作状况提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号