首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对滚动轴承传统故障诊断方法需要先验知识以及人工提取特征导致故障识别错误率高的问题,提出一种基于广义S变换(Generalized S transform,GST)和改进卷积神经网络(Convolutional Neural Network,CNN)的滚动轴承智能故障诊断方法。使用GST将一维振动信号转换为特征信息更加丰富的时频图,更加全面提取滚动轴承的故障特征信息。通过加入弹性斜率和高斯分布的神经元噪声,提出改进的激活函数EReLTanh(Elastic Rectified Linear Tanh,EReLTanh),并基于EReLTanh激活函数构建CNN。将得到的时频图进行压缩和归一化处理,生成时频图数据集并划分数据集。利用时频图数据集训练改进CNN,实现滚动轴承的智能故障诊断。使用自制实验平台采集不同种类滚动轴承故障数据,利用t-SNE进行全连接层特征降维可视化,结果表明:使用EReLTanh激活函数的CNN模型能够将不同故障样本的特征进行准确的分类,达到故障识别要求,同时使用该数据利用S变换、小波变换、GST并结合改进CNN和未改进CNN进行对比,提出的方法准确率得到提升。通...  相似文献   

2.
滚动轴承作为高速列车牵引电机的重要部件,其故障情况严重影响列车运行安全。声学轴承故障诊断方式具有无安装侵入性、运维成本低的优点,但也具有信噪比低、故障特征难以提取的缺点,机器学习则具有克服噪声影响的鲁棒性。针对应用机器学习进行声学故障诊断时,少量特征无法全面表征轴承故障的难题,文章提出将格拉姆角场(GAF)与小波时频图进行叠加融合,构成6通道融合特征图用以有效表征轴承的故障。首先,建立牵引电机轴承声学故障试验台获取故障声学信号;其次,建立基于GAF的声学信号融合特征图,然后使用残差网络(ResNET)模型针对融合特征图特征训练并验证故障分类模型,并与以单种特征图作为特征的故障分类方法进行准确率对比。结果表明,基于GAF的融合特征图的声学故障分类模型具有99.89%的准确率,融合特征图能更有效地映射轴承故障。  相似文献   

3.
针对滚动轴承故障诊断问题,提出一种融合一维卷积神经网络(1D CNN)和麻雀算法优化支持向量机(SSA-SVM)的网络结构。该网络结构通过卷积运算对原始时域振动信号直接进行特征提取,将提取到的特征输入到麻雀算法优化的支持向量机中,使用支持向量机代替Softmax进行分类。利用滚动轴承故障数据进行验证,此方法故障诊断精度高达0.983,高于其他网络结构,且整体网络结构简单,有一定实际应用价值。  相似文献   

4.
针对列车滚动轴承振动信号的非高斯、非平稳性特征,提出一种基于集合经验模式分解(Ensemble Empirical Mode Decomposition,EEMD)和径向基函数神经网络(Radial Basis Function Neural Network,RBFNN)相结合的滚动轴承故障诊断方法,利用EEMD方法对振动信号进行分解,得到前8个本征模态函数(Intrinsic Mode Functions,IMF)分量,将归一后的IMF能量特征向量作为RBF神经网络的输入向量构建故障诊断模型,从而实现滚动轴承的故障识别。将RBF神经网络方法和BP(Back Propagation)神经网络进行对比,本文提出的方法能精确识别正常轴承、滚动体故障、外圈故障和内圈故障等4种轴承状态,为提高列车滚动轴承故障诊断的准确性和实时性提供了新思路。  相似文献   

5.
针对滚动轴承在实际运行环境中同时存在变负荷和变噪声的复合工况干扰而产生的故障诊断效果不理想的问题,提出了一种用于滚动轴承变工况故障诊断的一维残差卷积神经网络方法。将归一化后整理完的原始轴承振动信号输入到网络模型中,利用具有残差连接的多个一维卷积层提取特征,再经过多个卷积池化,最后输入到Softmax层进行分类,输出轴承振动信号的故障类型。将所提方法与一维卷积神经网络(CNN)、LeNet-5和AlexNet几个经典模型进行对比分析,结果表明,本文方法在变噪声实验和变负荷实验中的平均准确率分别为94.16%和95.31%,均高于其他经典神经网路,具有较强的抗噪性和泛化性能力。  相似文献   

6.
针对滚动轴承单一诊断方法造成误诊率高、可靠性低的缺陷,提出一种基于变分模态分解(VMD)-支持向量机(SVM)和数学形态学(MM)-相关性分析(CA)的复合诊断算法。该算法采用双通道并行诊断,通道1使用VMD在频域分解故障信号,并结合贝叶斯SVM分类器获取诊断结果的后验概率,具有诊断准确性高的优点;通道2使用MM方法在时域中提取故障特征,通过CA方法获得诊断结果的相关性系数,具有较强的泛化能力。通过改进的加权平均证据理论方法将两通道判定结果有机融合,发挥两种单一方法的优势互补,实现复合式故障诊断。使用轴承故障试验台对复合算法进行验证,与单一方法进行对比。结果表明:该复合算法可有效提取非平稳信号中的故障特征,提高诊断结果的可靠性。  相似文献   

7.
针对变负载工况下单尺度CNN提取滚动轴承健康状态特征不充分的问题,提出了一种DSCNN-BiLSTM诊断模型。该模型基于粗粒度化和平均池化层的理论基础,通过双尺度卷积神经网络结合双向长短时记忆网络,对滚动轴承振动信号进行空间维度特征和时间序列特征的提取,实现端对端的滚动轴承故障诊断。通过设置2种不同变负载工况实验,采用DSCNN-BiLSTM模型进行滚动轴承故障特征提取,平均准确率分别达到了97.55%和98.07%,有效提高了在变负载工况下的滚动轴承故障诊断准确率,为滚动轴承健康状态识别提供了关键技术。  相似文献   

8.
机车走行部滚动轴承的状况直接关系到机车的性能和列车的运行安全。针对目前机车走行部滚动轴承故障诊断准确率不高、模型构建时间较长的问题,提出一种基于小波包和贝叶斯分类的故障诊断方法。通过小波包变换构造故障特征集,利用粗糙集和主成分分析进行降维,将未降维和降维之后的故障特征集输入到贝叶斯分类模型中实现故障诊断,最后将贝叶斯分类方法和神经网络及最小二乘支持向量机方法进行比较。仿真结果表明,朴素贝叶斯分类方法构建模型的时间更短,分类准确率更高。  相似文献   

9.
针对轨道车辆的滚动轴承故障诊断问题,提出了一种小波包与RBF神经网络相结合的故障诊断方法.首先对采集到的振动数据进行小波消噪,然后利用小波包分解提取故障信号的能量特征向量,最后利用提取的能量特征训练RBF神经网络,进行故障诊断.诊断结果表明,基于小波包和RBF神经网络的轨道车辆滚动轴承故障诊断方法能够较好的诊断出轨道车辆的轴承故障类型,具有一定的实际应用价值.  相似文献   

10.
铁道车辆车轮故障的产生,不仅会增大列车的振动和噪声使乘坐舒适性下降,而且会加速车辆及轨道零部件的损伤,严重时还会引发事故,因此对车轮服役状态的实时监测对保证列车安全运营具有重要意义。针对现有铁道车辆车轮故障诊断方法存在自适应能力弱、准确率低等不足,提出一种基于多尺度时频图与卷积神经网络(CNN)相结合的车轮故障智能诊断方法,该方法利用车轮所在轴箱垂向振动加速度来间接识别车轮服役状态。1)首先采用形态学滤波器对车辆轴箱振动加速度信号进行滤波降噪,然后采用完全噪声辅助聚合经验模态分解(CEEMDAN)将滤波后的信号自适应地分解为若干固有模态函数(IMF),选取能量熵增量相对较大的三阶分量作为信号的主分量。2)分别求各主分量的Wigner-Ville分布(WVD),然后叠加转化为多尺度时频图。3)对经典的LeNet-5模型进行结构改进和网络参数优化,构建适合车轮故障诊断的CNN模型,来学习提取车轮在不同工况下的时频图特征,并对时频图进行分类,将特征学习提取与故障分类融为一体,一定程度上实现了端到端的车轮故障诊断。经仿真试验和现场试验验证表明:所提出的方法对于车速、故障类型和故障程度都有很好的...  相似文献   

11.
[目的]为了能够充分利用故障日志数据诊断转辙机故障,提出了基于集成学习算法的道岔转辙机故障诊断方法。[方法]通过分析转辙机故障文本数据,并结合专家经验,建立了两级故障诊断思路;将故障文本数据预处理为机器能够识别的数据,作为故障诊断模型输入数据;介绍了基于AdaBoost集成学习法的CNN(卷积神经网络)-LSTM(长短期记忆网络)故障诊断模型的原理和方法。[结果及结论]试验结果表明,在数据类别不平衡或者样本数量有限的情况下,采用CNN-LSTM模型能够有效提高故障诊断的准确率;与其他故障诊断模型相比,CNN-LSTM模型性能更好;所提出方法具有有效性,能够满足应用场景准确率要求。  相似文献   

12.
因物理监测信息利用不足,动车组轴箱轴承故障诊断存在准确率较低问题。首先,利用高速动车组轴箱轴承试验台获取丰富数据,融合温度特征数据与振动特征数据,并使用主成分分析法进行融合与降维;然后,建立基于温振融合与DAE(深度自编码器)的轴箱轴承故障诊断模型,并通过深度自编码器进行模型训练;最后,用高速动车组轴箱轴承试验台测试集的数据进行模型验证。验证结果表明:与其他对比模型相比,基于温振融合与DAE的轴箱轴承故障诊断模型的诊断准确率更高。  相似文献   

13.
本文提出了一个基于改进粒子群优化算法的BP神经网络优化模型来进行轴承故障诊断,此模型融合粒子群优化算法的全局寻优能力和BP神经网络算法的局部搜索的优势,有效地防止了网络陷入局部极小值,同时又保证了诊断结果的精确性.仿真结果表明机车滚动轴承故障得到了有效诊断.相比于常规的BP神经网络模型,此方法不仅改进网络的收敛速度并且提高了预测准确性.  相似文献   

14.
基于模糊神经网络理论,提出一种基于模型构建的数据通信子系统(DCS)全局故障诊断方法。全局故障诊断模型的输入空间由故障征兆集组成,诊断过程由全局故障诊断规则实现,输出空间由故障类别集组成。基于对DCS系统结构的分析,选取了一些关键设备信息作为故障征兆信息。将故障征兆信息中的物理向量分析转化为算术数值判断,创建决策矩阵,构建全局故障诊断规则,实现了故障类别综合判定,从而完成全局故障诊断模型构建。以工程实例中的DCS典型故障类别为验证对象,对全局故障诊断模型进行了试验验证。该方法丰富了DCS故障诊断方法,总体精度可达到91.29%。  相似文献   

15.
针对滚动轴承早期故障信号易被强烈的背景噪声淹没及故障特征难以提取的特点,提出了基于变分模态分解(VMD)和形态学滤波相结合的滚动轴承早期故障诊断方法。首先利用VMD将早期故障信号自适应地分解为一系列IMF分量,然后选择峭度值最大的前两个IMF分量重构,并对重构信号进行形态学滤波,最后通过Teager能量算子计算重构分量的能量谱来提取滚动轴承的故障频率,判断故障类型。将该方法应用于滚动轴承仿真信号与实际故障数据中,分析结果表明该方法能够更加有效提取故障特征频率信息,实现了滚动轴承故障的精确诊断。  相似文献   

16.
基于振动信号处理的轴承故障诊断方法应用非常广泛。由于在实际采集的振动信号中往往混合着干扰信号,因此提出了一种基于Gabor变换的盲源分离和基于经验模态分解(EMD)的Hilbert包络谱分析相结合的故障诊断方法。首先采用基于Gabor变换的盲源分离方法对振动信号进行盲源分离,然后利用EMD方法进行分解获得本征模式函数(IMF)分量,再通过局部细化Hilbert包络谱方法分析判断轴承故障的特征。研究结果表明,通过对轴承振动信号进行盲源分离和EMD分解,可以使信号的故障特征更加明显,从而提高故障诊断的准确性。  相似文献   

17.
基于CNN+ LSTM混合神经网络构建故障时间序列预测模型,利用某型号地铁闸机扇门机构的故障数据进行实例分析,并与ARIMA、CNN和LSTM 3种单一预测模型对比。结果表明:CNN+LSTM混合神经网络模型的预测准确性较高,具有良好应用前景,研究成果可用于支持地铁闸机维修计划的制定和优化。  相似文献   

18.
张雷 《机车电传动》2019,(3):51-55,59
为了提高列车运行稳定性,针对牵引供电系统故障诊断进行研究。根据牵引供电系统工作原理和特性分析故障现象与发生原因,提取用于故障诊断的特征信号;建立基于粒子群优化算法(Particle Swarm Optimization,简称PSO)优化最小二乘支持向量机(Least Squares Support Vector Machine,简称LSSVM)的故障诊断模型,并使用主成分分析(Principal Component Analysis,简称PCA)算法提取数据特征作为故障诊断模型的输入来降低输入维数;使用多种故障诊断模型进行对比分析。研究结果表明:经过PCA算法提取特征的PSO-LSSVM故障诊断模型具有较高的识别效率和识别准确性。  相似文献   

19.
基于小波包分析的货车滚动轴承故障诊断   总被引:11,自引:1,他引:10  
铁路车辆滚动轴承故障的不解体诊断,对于提高轴承诊断效率,减轻操作人员的劳动强度和保证铁路运输的安全是至关重要。结合小波包分解和加权K近邻法提出了一种新的货车滚动轴承不解体故障诊断方法。首先利用小波包对滚动轴承的振动加速度信号进行分解,得到滚动轴承动态信号在不同频带的能量,并以此作为滚动轴承的特征向量;然后采用加权K近邻法对滚动轴承进行故障诊断。对197726型货车滚动轴承在轮对不解体条件下进行了诊断实验,结果表明该方法能准确地检测出滚动轴承外圈、内圈及滚子的局部缺陷,并且诊断速度快,完全满足实时诊断要求。  相似文献   

20.
针对高速铁路列控车载设备结构复杂、故障诊断特征不确定、传统故障诊断方法过于依赖专家经验、故障诊断自动化程度低等问题,提出一种贝叶斯网络与粗糙集模型约简技术相融合的故障诊断方法。首先对故障追踪表进行分析提取和数据挖掘,结合专家经验建立诊断知识数据库;其次对故障数据进行K2算法学习、训练,并结合诊断知识数据库先验知识建立BN结构模型;然后结合故障信息数据建立诊断决策表,利用粗糙集进行条件属性约简,消除冗余条件信息,简化模型并建立基于RS-BN算法的BN结构模型;再通过MLE算法进行BN模型的参数学习,获得模型的条件概率表,建立完整的BN诊断模型;最后对约简模型和未约简模型进行对比分析。通过某高铁实际故障数据仿真验证分析,测试结果证明了该方法有较高的准确性和实际模型的高似然度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号