首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
随着电力机车的发展,运行速度不断加快,对受电弓滑板材料的要求日益提高,同时也不断地促进了电力机车受电弓滑板材料的发展。现介绍国内外电力机车受电弓滑板材料的发展历程,并根据我国电气化铁路的发展趋势,参照国外高速列车用受电弓滑板材料,展望我国今后电力机车受电弓滑板材料的发展方向。  相似文献   

2.
受电弓滑板与接触导线材料及其磨损的研究   总被引:1,自引:0,他引:1  
受电弓滑板与接触导线是为满足电气化列车稳定运行而高速受流的重要部件,关系到列车的安全、高效运行。文章着重介绍滑板与接触导线材料的特征及其变迁。同时,阐述了滑板与接触导线磨损,对不同材质的滑板、接触导线的磨损机理及磨损趋势作了比较。  相似文献   

3.
从高速列车受电弓滑板与接触网的接触导线之间摩擦机理分析着手,研究摩擦副的机械磨损和电磨损机理,分析现有电力机车受电弓滑板存在的缺陷,指出高速列车滑板材料的最佳选择.  相似文献   

4.
日本电力机车受电弓滑板的发展及浸渍金属碳滑板的开发   总被引:6,自引:1,他引:5  
介绍了日本电力机车用受电弓滑板的发展过程,分析了这些滑板在实际使用中存在的问题.通过叙述日本浸渍金属碳滑板的研制、性能及其应用状况,指出浸渍金属碳滑板具有很好的发展前景.  相似文献   

5.
碳滑板发展概况及我国的研究进展   总被引:16,自引:2,他引:14  
简述电气化铁路用受电弓滑板发展概况,介绍碳滑板、浸金属碳、碳-金属纤维及碳-铜复合材料等几种碳材料滑板的性能特点,指出国内外碳滑板的差别及主要原因,分析碳滑板的发展趋势.  相似文献   

6.
随着列车进一步提速及受电弓数量的削减,日本新干线用受电弓滑板的集电电流增大,导致滑板磨耗增加,为此,要求进一步减轻架空线磨损及环境负担。文章介绍了日本铁道综合技术研究所为应对上述课题,着眼于在滑板材料中添加具备良好性能的新润滑成分,所研发的两种使用了新润滑成分的烧结合金滑板已成功获得专利。第1项专利是在滑板材料中添加B...  相似文献   

7.
随着列车速度的不断提升,受电弓滑板磨耗增加,对弓网系统运行的安全性和经济性造成威胁。目前,铁路部门仍采用传统人工登顶方法检测滑板磨损情况,效率低、安全性差、且干扰正常行车。因此,亟需探索简便、高效的滑板磨损量预测方法,以指导受电弓滑板的检修与更换。通过改变电流、温度参数进行多组试验发现,在低电流工况下,滑板磨损量随温度提升逐渐下降,在高电流工况下,滑板磨损量随温度提升先减小后增加;基于偏最小二乘回归法,建立了考虑温度作用的浸金属碳滑板磨损量预测模型,模型检测相对误差小于6%;选取不同材料滑板时,磨损量对各影响因素变化的敏感程度存在显著差异。研究结果对完善受电弓滑板磨损量预测模型,降低铁路运营维修成本,提高列车弓网系统运行稳定性具有一定指导意义。  相似文献   

8.
针对列车供电系统中重要组成部分之一的受电弓滑板磨耗问题,设计了一款预测模型对地铁受电弓滑板磨耗趋势进行有效的拟合和预测,弥补了现有的检测系统只能对受电弓进行实时检测的不足。利用线性支持向量回归(SVR-Linear)、最小二乘支持向量回归(LSSVR)和优化后的最小二乘支持向量回归(MI-LSSVR)对检测系统得到的受电弓滑板数据进行训练和拟合,并利用训练后的模型实现滑板磨耗的预测,其中,MI-LSSVR的拟合精度最高,达到97.3%。此外,利用地铁行走的里程数据进行预测,提前得到下一次运行后的滑板厚度,在滑板即将磨耗到限时进行预测,可得到滑板还能承受的运行里程,减少受电弓检修人员的工作量,提高受电弓的使用效率。  相似文献   

9.
为满足SS8型机车在九广铁路接触网下运行的需要对TSG3型受电弓的滑板和弓头进行改进;开发上部为曲线形状的铝包碳滑板,设计新的弓头,保证弓头的曲线要求。文章介绍改进方法和效果,并对准高速机车受电弓的设计提出了建议。  相似文献   

10.
受电弓滑板是为满足电气化列车稳定运行时高速受流的重要部件,关系到高速列车的安全、高效运行。文章详细介绍了新干线车辆用滑板材料的特征及其演变过程。同时,阐述了为适应高速运行采用的相关润滑剂成分的改进、外部润滑及滑板自润滑等新技术的开发与应用效果。  相似文献   

11.
目的:针对广州地铁9号线开通运营初期受电弓碳滑板出现较严重拉弧、异常磨耗及崩口等情况,提出了改进措施,以减小对列车运行的影响。方法:从车辆状态和接触网状态两方面排除了碳滑板材质不良及列车振动引起碳滑板异常磨耗的可能性。在此基础上查找出受电弓跳弓点位置,发现受电弓经过膨胀元件时拉弧严重。通过对MVB(多功能车辆总线)速度数据、正线信号对标点公里标及车体数据进行分析,对正线接触网膨胀元件进行了精确定位,发现受电弓在经过膨胀元件时会产生较大的振动,受电弓在膨胀元件处的弓网匹配性较差。进一步与国内同行就碳滑板异常磨耗问题进行交流,以确定受电弓碳滑板异常磨耗原因。结果及结论:膨胀元件结构问题是导致受电弓碳滑板异常磨耗的主要原因。改进措施为:优化膨胀元件辅助线过渡段长度和过渡形式,优化膨胀接头布置,优化列车牵引软件。采取上述改进措施后,弓网关系明显改善,碳滑板的使用寿命大为延长,牵引故障率明显下降,列车的维修成本大大降低。  相似文献   

12.
性能卓越的铜石墨受电弓滑板   总被引:4,自引:0,他引:4  
通过分析受电弓滑板的工况条件和为满足工况条件受电弓滑板应具备的性能,突出了铜石墨受电弓滑板的性能优势。综述了铜石墨滑板性能的研究现状,包括滑板的导电性能、摩擦磨损性能和冲击韧性的研究。讨论了铜石墨复合材料滑板的发展动向。  相似文献   

13.
电力机车受电弓滑板的调查分析   总被引:9,自引:0,他引:9  
张秀兰 《中国铁路》1996,(11):16-17
介绍了我国使用的受电弓滑板的运用现状,包括铁基与铜基粉末冶金滑板、浸金属碳滑板、铝包碳滑板的优缺点及存在的一些问题。  相似文献   

14.
城轨列车受电弓滑板磨耗检测技术研究   总被引:1,自引:0,他引:1  
为实现城轨列车受电弓滑板磨耗的在线非接触式检测,对城轨列车受电弓滑板磨耗检测技术进行研究。提出一种基于图像处理的受电弓滑板磨耗检测方法,其步骤为:首先,对采集系统采集到的原始图像进行图像滤波,滤除原始图像中的混合噪声;然后,采用基于直方图凹度分析的自适应Canny边缘检测方法对滤波后的图像进行边缘检测,检测出图像内受电弓滑板边缘;最后,通过相机标定和曲线融合获得实际的受电弓滑板磨耗曲线,以判断受电弓滑板磨耗是否超限。试验结果表明:该方法能有效地检测出原始图像中的受电弓滑板磨耗曲线,能有效地实现城轨列车受电弓滑板磨耗的在线非接触式检测。  相似文献   

15.
Ti3SiC2材料在受电弓滑板中的应用研究   总被引:6,自引:0,他引:6  
为解决电气化铁路提速带来的机车受电弓滑板材料问题,介绍了近年来开发的Ti3SiC2新型材料.针对滑板材料的基本使用要求,对Ti3SiC2材料的综合性能与正在使用或开发的碳基、铜基及铁基材料进行了全面比较,并对Ti3SiC2材料的制备方法、微观结构、自润滑机理和导电机理做了简要说明.研究结果表明,Ti3SiC2材料的强度、电阻率和自润滑性等关键性能指标明显优于碳基材料和国内外使用的其他受电弓滑板材料,特别是耐高温性、抗氧化性及可加工性,后者不能与之相比.通过进一步的技术转化,将Ti3SiC2材料成功用于制作高速电力机车的受电弓滑板是可以期待的.  相似文献   

16.
弓网异常磨耗会给列车正线行车安全带来极大的隐患,掌握受电弓碳滑板实际磨耗状况,对于制定应对措施很重要。文章针对郑州地铁1号线弓网异常磨耗现象,以列车碳滑板统计数据为基础,阐述碳滑板万公里磨耗计算方法、碳滑板轮廓分析方法,分析了碳滑板最低厚度分布值与磨耗的关系,以及碳滑板偏磨的影响因素,并根据弓网异常磨耗时期特点提出了受电弓检修计划。  相似文献   

17.
近日,国际电工委员会(IEC)发布我国主持的铁路国际标准IEC 62499:2021《轨道交通受流系统受电弓滑板试验方法》,我国铁路标准国际化工作再次取得新成果。受电弓滑板是机车车辆牵引电气系统的重要部件,IEC 62499:2021主要规定了受电弓滑板的温度性能、弯曲性能、剪切强度、机械抗疲劳强度、磨耗性能等试验方法,适用于铁路和城市轨道交通机车车辆受电弓滑板的检验,为保障机车车辆安全运行提供标准支撑。  相似文献   

18.
电力机车受电弓滑板   总被引:20,自引:0,他引:20  
概述了影响电力机车受电弓滑板寿命的主要因素,阐述了国内几种不材质滑板的特点及应用,展望了我国电力机车受电弓滑板的发展方向。  相似文献   

19.
北京天宜上佳新材料有限公司(简称天宜上佳)成立于2009年11月,专业从事高速列车、动车组、机车车辆、城市轨道交通车辆制动系统配套的闸片/闸瓦以及受电弓滑板等系列产品的研发和生产。天宜上佳经过不懈努力,在轨道交通制动闸片材料配方、生产技术方面取得了重大突破,尤其是高速列车粉末冶金闸片生产技术打破了国外的技术垄断,  相似文献   

20.
受电弓滑板磨耗现场检测技术综述   总被引:3,自引:0,他引:3  
简述了受电弓滑板的常用材质,给出了滑板厚度参数;分析了国内外滑板磨耗现场检测技术现状,并阐述了各种检测技术的系统组成和原理;最后对几种检测技术进行总结,得出采用图像处理技术检测滑板磨耗具有很大发展前景的结论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号