首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Seasonal changes in the abundance and biomass of cyanobacteria (Synechococcus and Prochlorococcus) and picoeukaryotes were studied by flow cytometry in the upper layers of the central Cantabrian Sea continental shelf, from April 2002 to April 2006. The study area displayed the typical hydrographic conditions of temperate coastal zones. A marked seasonality of the relative contribution of prokaryotes and eukaryotes was found. While cyanobacteria were generally more abundant for most of the year (up to 2.4 105 cells mL− 1), picoeukaryotes dominated the community (up to 104 cells mL− 1) from February to May. The disappearance of Prochlorococcus from spring through summer is likely related to shifts in the prevailing current regime. The maximum total abundance of picophytoplankton was consistently found in late summer–early autumn. Mean photic-layer picoplanktonic chlorophyll a ranged from 0.06 to 0.53 µg L− 1 with a relatively high mean contribution to total values (33 ± 2% SE), showing maxima around autumn and minima in spring. Biomass (range 0.58–40.16 mg C m− 3) was generally dominated by picoeukaryotes (mean ± SE, 4.28 ± 0.27 mg C m− 3) with an average contribution of cyanobacteria of 30 ± 2%. Different seasonality of pigment and biomass values resulted in a clear temporal pattern of picophytoplanktonic carbon to chlorophyll a ratio, which ranged from 10 (winter) to 140 (summer). This study highlights the important contribution of picoplanktonic chlorophyll a and carbon biomass in this coastal ecosystem.  相似文献   

2.
The distribution of picophytoplankton (0.2–2 µm) and nanophytoplankton (2–20 µm) in the Beaufort Sea–Mackenzie Shelf and Amundsen Gulf regions during autumn, 2002 is examined relative to their ambient water mass properties (salinity, temperature and nutrients: nitrate + nitrite, phosphate, and silicate) and to the ratio of variable to maximum fluorescence, Fv/Fm. Total phytoplankton and cell abundances (< 20 µm) were mainly correlated with salinity. Significant differences in picophytoplankton cell numbers were found among waters near the mouth of the Mackenzie River, ice melt waters and the underlying halocline water masses of Pacific origin. Picophytoplankton was the most abundant phytoplankton fraction during the autumnal season, probably reflecting low nitrate concentrations (surface waters average ~ 0.65 µM). The ratio Fv/Fm averaged 0.44, indicating that cells were still physiologically active, even though their concentrations were low (max Chl a = 0.9 mg m− 3). No significant differences in Fv/Fm were evident in the different water masses, indicating that rate limiting conditions for photosynthesis and growth were uniform across the whole system, which was in a pre-winter stage, and was probably already experiencing light limitation as a result of shortening day lengths.  相似文献   

3.
Protist abundance and taxonomic composition were determined in four development stages of newly formed sea ice (new ice, nilas, young ice and thin first-year ice) and in the underlying surface waters of the Canadian Beaufort Sea from 30 September to 19 November 2003. Pico- and nanoalgae were counted by flow cytometry whereas photosynthetic and heterotrophic protists ≥ 4 µm were identified and counted by inverted microscopy. Protists were always present in sea ice and surface water samples throughout the study period. The most abundant protists in sea ice and surface waters were cells < 4 µm. They were less abundant in sea ice (418–3051 × 103 cells L− 1) than in surface waters (1393–5373 × 103 cells L− 1). In contrast, larger protists (≥ 4 µm) were more abundant in sea ice (59–821 × 103 cells L− 1) than in surface waters (22–256 × 103 cells L− 1). These results suggest a selective incorporation of larger cells into sea ice. The ≥ 4 µm protist assemblage was composed of a total number of 73 taxa, including 12 centric diatom species, 7 pennate diatoms, 11 dinoflagellates and 16 flagellates. The taxonomic composition in the early stage of ice formation (i.e., new ice) was very similar to that observed in surface waters and was composed of a mixed population of nanoflagellates (Prasinophyceae and Prymnesiophyceae), diatoms (mainly Chaetoceros species) and dinoflagellates. In older stages of sea ice (i.e., young ice and thin first-year ice), the taxonomic composition became markedly different from that of the surface waters. These older ice samples contained relatively fewer Prasinophyceae and more unidentified nanoflagellates than the younger ice. Diatom resting spores and dinoflagellate cysts were generally more abundant in sea ice than in surface waters. However, further studies are needed to determine the importance of this winter survival strategy in Arctic sea ice. This study clearly shows the selective incorporation of large cells (≥ 4 µm) in newly formed sea ice and the change in the taxonomic composition of protists between sea ice and surface waters as the fall season progresses.  相似文献   

4.
Three aspects of the appendicularian O. dioica's ecophysiology were measured here: 1) morphological parameters over a wide range of appendicularian sizes, including mature animals in order to document the morphological characteristics inducing reproduction; 2) clearance rate and assimilation efficiency using feeding incubations with different algal concentrations and 3) the effect of food concentration on growth, mortality and reproduction.The relationship between the body carbon weight and the clearance rate follows a power function, with an exponent of 0.91 (± 0.07). The rate of particles retention increases with the food concentration following a Michaelis–Menten relationship (half-saturation constant = 151 ± 22 µg C l− 1, maximum clearance rate = 12 ± 1 µg C µg C− 1 d− 1). The carbon assimilation efficiency decreases with the increasing food concentration. As a result, appendicularian growth which is limited in concentrations lower than 50 µg C l− 1 is saturated above 100 µg C l− 1.In immature animals the gonad represents less than 30% of the body volume whereas in mature individuals, its volume varies between 50% and 87% (mean 63%) suggesting that gonad/total volume ratio can be used as indicator of the maturation stages. The gonad weight in mature animals represents 70.3 (± 4.6)% of the total body carbon weight. Two major maturity stages can explain the changes in energy allocation: i) the somatic growth, when less energy is invested in gonad growth when compared to the rest of the body and ii) the maturation phase where most of the assimilated matter is invested in gonad maturation. This process is rapid, lasting only few hours. For this reason we measured completely mature organisms that are generally not measured during the experimental work with appendicularians. In food-limited conditions, the gonad maturation process starts with smaller individuals and ends with smaller reproductive animals having the same gonad to total volume ratio than in unlimited food conditions. The results obtained in this study were used to model the life cycle of O. dioica (see Lombard, F., Sciandra, A. and Gorsky, G., 2009-this volume. Appendicularian ecophysiology. II. Modeling nutrition, metabolism, growth and reproduction of the appendicularian Oikopleura dioica.).  相似文献   

5.
In many parts of the world coastal waters with anthropogenic eutrophication have experienced a gradual depletion of dissolved silica (DSi) stocks. This could put pressure on spring bloom diatom populations, e.g. by limiting the intensity of blooms or by causing shifts in species composition. In addition, eutrophication driven enhanced diatom growth is responsible for the redistribution of DSi from the water phase to the sediments, and changes in the growth conditions may be reflected in the sediment diatom stratigraphy.To test for changes in diatom communities we have analyzed four sediment cores from the Baltic Sea covering approximately the last 100 years. The sediment cores originate from the western Gulf of Finland, the Kattegat, the Baltic Proper and the Gulf of Riga. Three out of the four cores reveal only minor changes in composition of diatom assemblages, while the Gulf of Riga core contains major changes, occurring after the second World War. This area is set apart from the other Baltic Sea basins by a high frequency of low after spring bloom DSi concentrations (< 2 µmol L− 1) during a relatively well defined time period from 1991–1998. In 1991 to 1993 a rapid decline of DSi spring concentrations and winter stocks (down to 5 µmol L− 1) in the Gulf was preceded by exceptionally intense diatom spring blooms dominated by the heavily silicified species Thalassiosira baltica (1991–1992; up to 5.5 mg ww L− 1). T. baltica has been the principal spring bloom diatom in the Gulf of Riga since records began in 1975. DSi consumption and biomass yield experiments with cultured T. baltica suggest that intense blooms can potentially exhaust the DSi stock of the water column and exceed the annual Si dissolution in the Gulf of Riga. The phytoplankton time series reveals another exceptional T. baltica bloom period in 1981–1983 (up to 8 mg L− 1), which, however, took place before the regular DSi measurements. These periods may be reflected in the conspicuous accumulation of T. baltica frustules in the sediment core corresponding to ca. 1975–1985.  相似文献   

6.
Atmospheric molar fraction of CO2 (xCO2atm) measurements obtained on board of ships of opportunity are used to parameterize the seasonal cycle of atmospheric xCO2 (xCO2atm) in three regions of the eastern North Atlantic (Galician and French offshore and Bay of Biscay). Three selection criteria are established to eliminate spurious values and identify xCO2atm data representative of atmospheric background values. The filtered data set is fitted to seasonal curve, consisting of an annual trend plus a seasonal cycle. Although the fitted curves are consistent with the seasonal evolution of xCO2atm data series from land meteorological stations, only ship-board measurements can report the presence of winter xCO2atm minimum on Bay of Biscay. Weekly air–sea CO2 flux differences (mmol C·m− 2 day− 1) produced by the several options of xCO2atm usually used (ship-board measurements, data from land meteorological stations and annually averaged values) were calculated in Bay of Biscay throughout 2003. Flux error using fitted seasonal curve relative to on board measurements was minimal, whereas land stations and annual means yielded random (− 0.2 ± 0.3 mmol C·m− 2·day− 1) and systematic (− 0.1 ± 0.4 mmol C·m− 2 day− 1), respectively. The effect of different available sources of sea level pressure, wind speed and transfer velocity were also evaluated. Wind speed and transfer velocity parameters are found as the most critical choice in the estimate of CO2 fluxes reaching a flux uncertainty of 7 mmol C·m− 2·day− 1 during springtime. The atmospheric pressure shows a notable relative effect during summertime although its influence is quantitatively slight on annual scale (0.3 ± 0.2 mmol C·m− 2·day− 1). All results confirms the role of the Bay of Biscay as CO2 sink for the 2003 with an annual mean CO2 flux around − 5 ± 5 mmol C m− 2 day− 1.  相似文献   

7.
The water column above the Prestige wreckage was sampled during two consecutive campaigns: Prestinaut (December 2002) two weeks after the tanker sunk and HidroPrestige0303 (March 2003) one month after the sealing of the main fuel leaks. Samples of the original cargo fuel and the emulsified fuel in the surface of the ocean were also collected. Analysis of the fuel indicated the release of 135 kg of Cu, 1700 kg of Ni and 5300 kg of V from the original fuel to the water column, remaining 35 kg of Cu, 3100 kg of Ni and 13,800 kg of V in the emulsified fuel. The metal partitioning between the water column and the emulsioned floating fuel, Cu > Ni ~ V, are in accordance with the stability index for the metal–nitrogen bond in metalloporphyrins. This release had an impact on dissolved trace metal concentrations in the water column. An increase on dissolved copper (2.8–4.7 nM) and nickel (2.2–8.0 nM) with respect to natural values (1–3 nM for Cu and 1.6–5 nM for Ni) was observed. Values for vanadium (28–35 nM) were in the range of pristine North Atlantic waters (30–36 nM). This contamination was especially observed in the upper water column (0–50 m), associated with the mixing of seawater with the fuel moving upwards, and in deep waters, where the residence time of fuel is higher. Future research in this field should focus on the environmental variables and the processes that control the release of contaminants from fuels for a better assessment of the contamination in oil-spill events.  相似文献   

8.
We measured the abundance and biomass of phototrophic and heterotrophic microbes in the upper mixed layer of the water column in ice-covered Franklin Bay, Beaufort Sea, Canada, from December 2003 to May 2004, and evaluated the influence of light and nutrients on these communities by way of a shipboard enrichment experiment. Bacterial cell concentrations showed no consistent trends throughout the sampling period, averaging (± SD) 2.4 (0.9) × 108 cells L− 1; integrated bacterial biomass for the upper mixed layer ranged from 1.33 mg C m− 3 to 3.60 mg C m− 3. Small cells numerically dominated the heterotrophic protist community in both winter and spring, but in terms of biomass, protists with a diameter > 10 µm generally dominated the standing stocks. Heterotrophic protist biomass integrated over the upper mixed layer ranged from 1.23 mg C m− 3 to 6.56 mg C m− 3. Phytoplankton biomass was low and variable, but persisted during the winter period. The standing stock of pigment-containing protists ranged from a minimum value of 0.38 mg C m− 3 in winter to a maximal value of 6.09 mg C m− 3 in spring and the most abundant taxa were Micromonas-like cells. These picoprasinophytes began to increase under the ice in February and their population size was positively correlated with surface irradiance. Despite the continuing presence of sea ice, phytoplankton biomass rose by more than an order of magnitude in the upper mixed layer by May. The shipboard experiment in April showed that this phototrophic increase in the community was not responsive to pulsed nutrient enrichment, with all treatments showing a strong growth response to improved irradiance conditions. Molecular (DGGE) and microscopic analyses indicated that most components of the eukaryotic community responded positively to the light treatment. These results show the persistence of a phototrophic inoculum throughout winter darkness, and the strong seasonal response by arctic microbial food webs to sub-ice irradiance in early spring.  相似文献   

9.
Phytoplankton, bacteria and microzooplankton were investigated on a transect in the Bellingshausen Sea during the ice melt period in November–December 1992. The transect along the 85°W meridian comprised seven stations that progressed from solid pack-ice (70°S), through melting ice into open water (67°S). The abundance, biomass and taxonomic composition were determined for each component of the microbial community. The phytoplankton was mostly dominated by diatoms, particularly small (<20 μm) species. Diatom abundance ranged from 66 000 cells l−1 under the ice to 410 000 cells l−1 in open water. Phytoplankton biomass varied from <1 to 167 mg C m−3, with diatoms comprising 89–95% of the total biomass in open water and autotrophic nanoflagellates comprising 57% under the ice. The standing stocks of autotrophs in the mixed layer ranged from 95 mg C m−2 under the pack-ice to 9478 mg C m−2 in open waters. Bacterial abundance in ice-covered and open water stations varied from 1.1 to 5.5×108 cells l−1. Bacterial biomass ranged from 2.4 mg C m−3 under pack-ice to an average of 14 mg C m−3 in open water. The microzooplankton consisted mainly of aloricate oligotrich ciliates and heterotrophic dinoflagellates and these were most abundant in open waters. Their biomass varied between 0.2 and 54 mg C m−3 with a minimum at depth under the ice and maximum in open surface waters. Microheterotrophic standing stocks varied between 396 mg C m−2 under pack-ice and 3677 mg C m−2 in the open waters. The standing stocks of the total microbial community increased consistently from 491 mg C m−2 at the ice station to 13 155 mg C m−2 in open waters, reflecting the productive response of the community to ice-melt. The composition of the microbial community also shifted markedly from one dominated by heterotrophs (82% of microbial stocks) at the ice station to one dominated by autotrophs (73% of microbial stocks) in the open water. Our estimates suggest that the microbial community comprised >100% of the total particulate organic carbon (POC) under the ice and 62–66% of the measured POC in the open waters.  相似文献   

10.
The objective of the present study was to verify possible spatial, seasonal, and inter-annual changes in the zooplankton off Paita (northern Peru), an upwelling area located closely to the limits of cold Humboldt Current and warm Equatorial Surface Waters. Zooplankton was sampled at subsurface on 53 occasions from August 1994 to December 2004 at four stations located 2 to 30 km offshore with a WP-2 net (300 µm). Extremely high surface water temperatures combined with low salinities were observed during the 1997/98 El Niño up to 29.0 °C) and in April 2002 (up to 25.0 °C). Temperatures more than 2 °C above monthly average were also observed in October 1994, in April 2000, and in November 2004. Significant trends were observed for oxygen concentration (increase) and several horizontal and vertical gradients. Among the copepods (72% of all individuals), the most abundant species were Paracalanus parvus (28%), Acartia tonsa (26%), and Calanus sp. (10%). The strong 1997–98 El Niño (EN) event led to drastic changes in species composition that were reversed during the 1998–99 La Niña (LN) event. Community parameters such as total abundance, diversity, equitability and species richness displayed marked variations associated with the 1997–98 EN and long-term trends. Long-term trends were significant for several vertical and horizontal temperature and oxygen gradients, indicating an increase in upwelling intensity at the shelf during the study period. 10-year-trends were also significant for total zooplankton abundance (increase) and community evenness (J, decline). Our data confirmed the importance of the weak EN in 2002/03 for the study region. Within the trend of increasing zooplankton abundance, a sharp step or shift was observed from 1999 to 2000. When using sequential t-tests to detect shifts in (x + 1) transformed abundance data, a significant rupture was found between the last sampling in 1999 and the first sampling in 2000. Also, a substantial decrease in diel variability occurred after 1999, probably due to changes in vertical migration patterns. The considerable increase in zooplankton abundance over the study period, the ENSO effect, and the 1999–2000 transition are discussed with regard to synchronicity with other zooplankton time series. The present study contributes with the first evidence from an important area located in the Humboldt Current for synchronous trends and changes that were previously observed elsewhere in the Pacific. Our results demonstrated the importance of long-term zooplankton monitoring studies in upwelling areas, and confirms the idea of dramatic changes in pelagic ecosystem structure occurring in the East Pacific.  相似文献   

11.
The biological dynamics of the open northern Red Sea (21.5°–27.5° N, 33.5°–40° E) have not been studied extensively, due in part to both the inaccessibility of this desert region and political considerations. Remotely-sensed chlorophyll a data therefore provide a framework to investigate the primary patterns of biological activity in this oceanic basin. Monthly chlorophyll a data from the 8-year Sea-viewing Wide Field-of-View sensor (SeaWiFS) mission, and data from the Moderate Resolution Imaging Spectroradiometer (MODIS), were analyzed with the Goddard Earth Sciences Data and Information Services Center (GES DISC) online data analysis system “Giovanni”. The data indicate that despite the normal low chlorophyll a concentrations (0.1–0.2 mg m− 3) in these oligotrophic waters, there is a characteristic seasonal bloom in March–April in the northernmost open Red Sea (24° to 27.5° N) concurrent with minimum sea surface temperature. The location of the highest chlorophyll concentrations is consistent with a linear box model [Eshel, G., and Naik, N.H., 1997. Climatological coastal jet collision, intermediate water formation, and the general circulation of the Red Sea. J. Phys. Oceanogr. 27(7), 1233–1257.] of Red Sea circulation. Two years in the data set exhibited a different seasonal cycle consisting of a relatively weak northern spring bloom and elevated chlorophyll concentrations to the south (21.5° to 24° N).The data also indicate that large coral reef complexes may be sources of either nutrients or chlorophyll-rich detritus and sediment, enhancing chlorophyll a concentration in waters adjacent to the reefs.  相似文献   

12.
100-years-changes in the phytoplankton community of Kiel Bight (Baltic Sea)   总被引:1,自引:0,他引:1  
Literature data from 1905/06, 1912/13 and 1949/50 were compared with recent data (2001–2003) from Kiel Bight in order to investigate changes in phytoplankton composition and biomass, which may serve as indicators of environmental changes. In terms of biomass, diatomophyceae and dinophyceae are by far the most important groups. Their ratio is still close to unity. The share of diatomophyceae increased strongly in years with exceptionally high summer blooms (2001) or exceptionally early spring blooms (2003). The summer and autumn blooms of Chaetoceros and Skeletonema, detected in the early 20th century, are replaced by other diatoms (Cerataulina pelagica, Dactyliosolen fragilissimus, Proboscia alata, Pseudo-nitzschia spp.). Chaetoceros and Skeletonema are still important components of the spring blooms. Now as before, the autumn blooms are dominated by Ceratium spp., sometimes also by diatoms. Newly appearing bloom-forming species are mostly potentially toxic (Dictyocha speculum, Prorocentrum minimum, Pseudo-nitzschia spp.). The total phytoplankton biomass has roughly doubled in the course of the last century. The reference condition for phytoplankton biomass in Kiel Bight in the sense of the Water Framework Directive was defined at 55 mg C m− 3 (± 10%, annual mean). The mean annual biomass of diatomophyceae and dinophyceae was 25 mg C m− 3 (± 40%) for each, indicating that the sum of their carbon biomass amounted to 90% (± 10%) of the total phytoplankton biomass on an annual average. Diatomophyceae represented at least 80% of carbon biomass in the spring bloom peak at the beginning of the 20th century.  相似文献   

13.
14.
The dissolved lead was studied in the whole salinity gradient of the system composed of the Loire estuary and the North Biscay continental shelf. About 130 samples were collected in winter 2001 and spring 2002 during Nutrigas and Gasprod campaigns (Programme PNEC-Golfe de Gascogne, RV Thalassa) and metal measurements were conducted on board by Potentiometric Stripping Analysis. In the Loire estuary, levels of dissolved lead ranged from 0.15 to 0.24 nM and from 0.04 to 0.26 nM in winter and spring, respectively. Compared to the concentrations reported in 1987 and 1990 (0.4–1.7 nM; Boutier, B., Chiffoleau, J.F., Auger, D., Truquet, I., 1993. Influence of the Loire river on dissolved lead and cadmium concentrations in coastal waters of Brittany. Estuar. Coast. Shelf S., 36:133–143, Estuarine, Coastal and Shelf Science 36, 133–143) our study indicated much lower values. The fall in concentration in the estuary could be attributed to the stopping of activity of Octel, a big manufacturer of tetra alkyl lead. Discharge in dissolved metal to the continental shelf by the Loire river was assessed as 7.5 and 1.9 kg day− 1 for winter and spring, respectively. On the continental shelf, levels of dissolved lead varied within 0.06 and 0.27 nM in winter (0.15 ± 0.06 nM, sd = 1.96, n = 49), whereas concentrations measured in spring were in the range 0.06–0.17 nM (0.09 ± 0.03 nM, sd = 1.96, n = 60). This difference in metal concentration was related to the amounts of rainfall that have fallen over the continental shelf: estimations of inputs by this way (74 and 32 kg day− 1 in winter and spring, respectively) appeared to be significantly higher than inputs from the Loire river (7.5 and 1.9 kg day− 1 in winter and spring, respectively). The distributions of dissolved metal in the surface waters highlighted the role of suspended particular matter (SPM) for a rapid “trapping” of lead near the mouth of the estuary. The vertical distributions showed, in the stratified area, a biological transfer of lead between winter and spring from surface waters to the halocline.  相似文献   

15.
Over the past 20 years, the Bohai Sea has been subjected to a considerable human impact through over-fishing and pollution. Together with the influence of the Yellow River cut-off, the ecosystem experienced a dramatic change. In order to integrate available information to detect any change in macrobenthic community structure and diversity over space and time, data collected during the 1980s and the 1990s from 3 regions of the Bohai Sea (Laizhou Bay, 16 stations, 37–38°N, 119–120.5°E; central Bohai Sea, 25 stations, 38–39°N, 119–121°E; eastern Bohai Bay, 12 stations, 38–39°N, 118.5–119°E) were reanalyzed in a comparative way by means of a variety of statistical techniques. A considerable change in community structure between the 1980s and the 1990s and over the geographical regions at both the species and family level were revealed. After 10 years, there was a considerable increase in abundance of small polychaetes, bivalves and crustaceans but decreased number of echinoderms. Once abundant in Laizhou Bay in the 1980s, a large echinoderm Echinocardium cordatum and a small mussel Musculista senhousia almost disappeared from the surveying area in the 1990s. Coupled with the increased abundance was the increased species richness in general whereas evenness was getting lower in central Bohai Sea and Bohai Bay but increased in Laizhou Bay. K-dominance plot showed the same trend as evenness J′. After 10 years, the macrobenthic diversity in the Bohai Sea as a whole was slightly reduced and a diversity ranking of central Bohai Sea > Laizhou Bay > eastern Bohai Bay over space was also suggested. Sediment granulometry and organic content were the two major agents behind the observed changes.  相似文献   

16.
A 1/32° global ocean nowcast/forecast system has been developed by the Naval Research Laboratory at the Stennis Space Center. It started running at the Naval Oceanographic Office in near real-time on 1 Nov. 2003 and has been running daily in real-time since 1 Mar. 2005. It became an operational system on 6 March 2006, replacing the existing 1/16° system which ceased operation on 12 March 2006. Both systems use the NRL Layered Ocean Model (NLOM) with assimilation of sea surface height from satellite altimeters and sea surface temperature from multi-channel satellite infrared radiometers. Real-time and archived results are available online at http://www.ocean.nrlssc.navy.mil/global_nlom. The 1/32° system has improvements over the earlier system that can be grouped into two categories: (1) better resolution and representation of dynamical processes and (2) design modifications. The design modifications are the result of accrued knowledge since the development of the earlier 1/16° system. The improved horizontal resolution of the 1/32° system has significant dynamical benefits which increase the ability of the model to accurately nowcast and skillfully forecast. At the finer resolution, current pathways and their transports become more accurate, the sea surface height (SSH) variability increases and becomes more realistic and even the global ocean circulation experiences some changes (including inter-basin exchange). These improvements make the 1/32° system a better dynamical interpolator of assimilated satellite altimeter track data, using a one-day model forecast as the first guess. The result is quantitatively more accurate nowcasts, as is illustrated by several model-data comparisons. Based on comparisons with ocean color imagery in the northwestern Arabian Sea and the Gulf of Oman, the 1/32° system has even demonstrated the ability to map small eddies, 25–75 km in diameter, with 70% reliability and a median eddy center location error of 22.5 km, a surprising and unanticipated result from assimilation of altimeter track data. For all of the eddies (50% small eddies), the reliability was 80% and the median eddy center location error was 29 km. The 1/32° system also exhibits improved forecast skill in relation to the 1/16° system. This is due to (a) a more accurate initial condition for the forecast and (b) better resolution and representation of critical dynamical processes (such as upper ocean – topographic coupling via mesoscale flow instabilities) which allow the model to more accurately evolve these features in time while running in forecast mode (forecast atmospheric forcing for the first 5 days, then gradually reverting toward climatology for the remainder of the 30-day forecast period). At 1/32° resolution, forecast SSH generally compares better with unassimilated observations and the anomaly correlation of the forecast SSH exceeds that from persistence by a larger amount than found in the 1/16° system.  相似文献   

17.
Methane (CH4) concentrations were measured in the water column, in sediment porewaters, and in atmospheric air, in the Ría de Vigo, NW Spain, during both the onset (April 2003) and at the end of (September 2004) seasonal upwelling. In addition, CH4 concentration and stable isotopic signatures (δ13CH4) were measured in porewaters, and sediment methanogenesis and aerobic oxidation of CH4 were determined in sediment incubations. Surface water column CH4 (2 m depth) was in the range 3–180 nmol l− 1 (110–8500% saturation) and followed a generally landward increase but with localised maxima in both the inner and middle Ría. These maxima were consistent with CH4 inputs from underlying porewaters in which CH4 concentrations were up to 3 orders of magnitude higher (maximum 350 μmol l− 1). Surface water CH4 concentrations were approximately three times higher in September than in April, consistent with a significant benthic CH4 flux driven by enhanced sediment methanogenesis following the summer productivity maximum. CH4 and δ13CH4 in sediment porewaters and in incubated sediment slurries (20 °C) revealed significant sediment CH4 oxidation, with an apparent isotopic fractionation factor (rc) of  1.004. Using turbulent diffusion models of air–sea exchange we estimate an annual emission of atmospheric CH4 from the Ría de Vigo of 18–44 × 106 g (1.1–2.7 × 106 mol). This estimate is approximately 1–2 orders of magnitude lower than a previous estimate based on a bubble transport model.  相似文献   

18.
A full-spectral third-generation ocean wind–wave model (Wavewatch-III) implemented in the South China Sea is used to investigate the effects of the wave boundary layer on the drag coefficient and the sea-to-air transfer velocity of dimethylsulfide (DMS) during passage of Typhoon Wukong (September 5–11, 2000) with a maximum sustained wind speed of 38 m s− 1. The model is driven by the reanalyzed surface winds (1° × 1°, four times daily) from the National Centers for Environmental Prediction. It is found that the wave boundary layer evidently enhances (16.5%) the drag coefficient (in turn increases the momentum flux across the air–sea interface), and reduces (13.1%) the sea-to-air DMS transfer velocity (in turn decreases the sea-to-air DMS flux). This indicates the possibility of important roles of wave boundary layer in atmospheric DMS contents and global climate system.  相似文献   

19.
Dynamics of suprabenthos and zooplankton were analyzed in two areas located in the NW (off Sóller harbour) and S (off Cabrera Archipelago) of Mallorca (Balearic Islands, western Mediterranean) at depths ranging between 135–780 m. Four stations situated respectively at 150 m (shelf-slope break), and at bathyal depths of 350, 650 and 750 m were sampled at bi-monthly intervals during six cruises performed between August 2003 and June 2004. Suprabenthos showed maximum biomass in both areas from late spring to summer (April to August), while minimum biomass was found in autumn (September–November). Though variable, temporal dynamics of zooplankton showed peaks of biomass in late winter and summer (February and June), while minimals occurred in autumn (August–September) and, at bathyal depths, in April. Suprabenthos (abundance; MDS analyses) showed a sample aggregation as a function of depth (3 groups corresponding to the shelf-slope break, upper slope — over 350 m; and the middle, deeper part of the slope — over 650–750 m), without any separation of hauls by season. By contrast, zooplankton samples were separated by season and not by depth. There was evidence of three seasonal groups corresponding to summer (June 2004–August 2003), autumn–winter (September and November 2003, February 2004), and spring (April 2004), being especially well established off Sóller. In general, suprabenthos was significantly correlated with the sediment variables (e.g. total organic matter content (% OM), potential REDOX), whereas zooplankton was almost exclusively dependent on Chl a at the surface, which suggests two different food sources for suprabenthos and zooplankton. The increase of suprabenthos abundance in April–June was paralleled by a sharp increase (ca. 2.8 times) in the %OM on sediment during the same period, coupled ca. 1–2 months of delay with the peak of surface Chl a recorded in February–March (from satellite imagery data). Suprabenthos biomass was also correlated with salinity close to the bottom, suggesting a link between suprabenthos abundance and changes in the oceanographic condition of water masses close to the bottom. It is suggested that a higher suprabenthos biomass recorded off Sóller in comparison to that off Cabrera in June could, in turn, be related to a seasonal inflow of Levantine Intermediate Water (LIW) in April–June in this area at mid bathyal depths (350–650 m). This trend would be based on: 1) it was evident only at mid-slope depths between 350–750 m, coinciding with the LIW distribution, and 2) it was not recorded among zooplankton (collected throughout the water column). The possible effect of the fluctuations of suprabenthos and zooplankton on higher trophic levels has been explored studying the diet and food consumption rates of the red shrimp Aristeus antennatus, as indicator species by its dominance in bathyal communities. A. antennatus increased its food consumption from February to April–June 2004 off Sóller, which in the case of large (CL > 40 mm) specimens was found in both areas. In addition, there was a shift of diet from winter to spring–early summer. In this last period, A. antennatus preyed upon euphausiids and mesopelagic decapods and fish, while benthos (e.g. polychaetes and bivalves) decreased in the diet. This indicates an increase in the food consumption and probably in the caloric content of the diet in pre-spawning females in April–June 2004, which is synchronized with the period when gonad development begins in A. antennatus females (May–June). Anyway, macrozooplankton, and not suprabenthos, is crucial as a high energetic food source in the coupling between food intake and reproduction in the red shrimp.  相似文献   

20.
The Mackenzie River is the largest river on the North American side of the Arctic and its huge freshwater and sediment load impacts the Canadian Beaufort Shelf. Huge quantities of sediment and associated organic carbon are transported in the Mackenzie plume into the interior of the Arctic Ocean mainly during the freshet (May to September). Changing climate scenarios portend increased coastal erosion and resuspension that lead to altered river-shelf-slope particle budgets. We measured sedimentation rates, suspended particulate matter (SPM), particle size and settling rates during ice-free conditions in Kugmallit Bay (3–5 m depth). Additionally, measurements of erosion rate, critical shear stress, particle size distribution and resuspension threshold of bottom sediments were examined at four regionally contrasting sites (33–523 m depth) on the Canadian Beaufort Shelf using a new method for assessing sediment erosion. Wind induced resuspension was evidenced by a strong relationship between SPM and wind speed in Kugmallit Bay. Deployment of sediment traps showed decreasing sedimentation rates at sites along an inshore–offshore transect ranging from 5400 to 3700 g m− 2 day− 1. Particle settling rates and size distributions measured using a Perspex settling chamber showed strong relationships between equivalent spherical diameter (ESD) and particle settling rates (r= 0.91). Mean settling rates were 0.72 cm s− 1 with corresponding ESD values of 0.9 mm. Undisturbed sediment cores were exposed to shear stress in an attempt to compare differences in sediment stability across the shelf during September to October 2003. Shear was generated by vertically oscillating a perforated disc at controlled frequencies corresponding to calibrated shear velocity using a piston grid erosion device. Critical (Type I) erosion thresholds (u) varied between 1.1 and 1.3 cm s− 1 with no obvious differences in location. Sediments at the deepest site Amundsen Gulf displayed the highest erosion rates (22–54 g m− 2 min− 1) with resuspended particle sizes ranging from 100 to 930 µm for all sites. There was no indication of biotic influence on sediment stability, although our cores did not display a fluff layer of unconsolidated sediment. Concurrent studies in the delta and shelf region suggest the importance of a nepheloid layer which transports suspended particles to the slope. Continuous cycles of resuspension, deposition, and horizontal advection may intensify with reduction of sea ice in this region. Our measurements coupled with studies of circulation and cross-shelf exchange allow parameterization and modeling of particle dynamics and carbon fluxes under various climate change scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号