首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a dynamic user equilibrium for bus networks where recurrent overcrowding results in queues at stops. The route-choice model embedded in the dynamic assignment explicitly considers common lines and strategies with alternative routes. As such, the shortest hyperpath problem is extended to a dynamic scenario with capacity constraints where the diversion probabilities depend on the time at which the stop is reached and on the expected congestion level at that time. In order to reproduce congestion for all the lines sharing a stop, the Bottleneck Queue Model with time-varying exit capacity, introduced in Meschini et al. (2007), is extended. The above is applied to separate queues for each line in order to satisfy the First-In-First-Out principle within every attractive set, while allowing overtaking among passengers with different attractive sets but queuing single file. The application of the proposed model to a small example network clearly reproduces the formation and dispersion of passenger queues due to capacity constraints and thus motivates the implementation of the methodology on a real-size network case as the next step for future research.  相似文献   

2.
This paper presents a combined activity/travel choice model and proposes a flow-swapping method for obtaining the model's dynamic user equilibrium solution on congested road network with queues. The activities of individuals are characterized by given temporal utility profiles. Three typical activities, which can be observed in morning peak period, namely at-home activity, non-work activity on the way from home to workplace and work-purpose activity, will be considered in the model. The former two activities always occur together with the third obligatory activity. These three activities constitute typical activity/travel patterns in time-space dimension. At the equilibrium, each combined activity/travel pattern, in terms of chosen location/route/departure time, should have identical generalized disutility (or utility) experienced actually. This equilibrium can be expressed as a discrete-time, finite-dimensional variational inequality formulation and then converted to an equivalent "zero-extreme value" minimization problem. An algorithm, which iteratively adjusts the non-work activity location, corresponding route and departure time choices to reach an extreme point of the minimization problem, is proposed. A numerical example with a capacity constrained network is used to illustrate the performance of the proposed model and solution algorithm.  相似文献   

3.
This paper describes a logit model of route choice for urban public transport and explains how the archived data from a smart card-based fare payment system can be used for the choice set generation and model estimation. It demonstrates the feasibility and simplicity of applying a trip-chaining method to infer passenger journeys from smart card transactions data. Not only origins and destinations of passenger journeys can be inferred but also the interchanges between the segments of a linked journey can be recognised. The attributes of the corresponding routes, such as in-vehicle travel time, transfer walking time and to get from alighting stop to trip destination, the need to change, and the time headway of the first transportation line, can be determined by the combination of smart card data with other data sources, such as a street map and timetable. The smart card data represent a large volume of revealed preference data that allows travellers' behaviour to be modelled with higher accuracy than by using traditional survey data. A multinomial route choice model is proposed and estimated by the maximum likelihood method, using urban public transport in ?ilina, the Slovak Republic, as a case study  相似文献   

4.
Abstract

A route-based combined model of dynamic deterministic route and departure time choice and a solution method for many origin and destination pairs is proposed. The divided linear travel time model is used to calculate the link travel time and to describe the propagation of flow over time. For the calculation of route travel times, the predictive ideal route travel time concept is adopted. Solving the combined model of dynamic deterministic route and departure time choice is shown to be equivalent to solving simultaneously a system of non-linear equations. A Newton-type iterative scheme is proposed to solve this problem. The performance of the proposed solution method is demonstrated using a version of the Sioux Falls network. This shows that the proposed solution method produces good equilibrium solutions with reasonable computational cost.  相似文献   

5.
This article presents a route choice model for public transit networks that incorporates variables related to network topology, complementing those found in traditional models based on service levels (travel time, cost, transfers, etc.) and users’ socioeconomic and demographic characteristics (income level, trip purpose, etc.). The topological variables represent concepts such as the directness of the chosen route and user knowledge of the network. For both of these factors, the necessary data is endogenous to the modelling process and can be quantified without the need for information-gathering beyond what is normally required for building route choice models. Other novel variables in the proposed formulation capture notions of user comfort such as vehicle occupancy rates and certain physical characteristics of network stations. We conclude that these new variables significantly improve the explanatory and predictive ability of existing route choice specifications.  相似文献   

6.
The present paper presents a data-driven method for assessing the resilience of the European passenger transport network during extreme weather events. The method aims to fill in the gap of current research efforts regarding the quantification of impacts attributed to climate change and the identification of substitutability opportunities between transport modes in case of extreme weather events (EWE). The proposed method consists of three steps concerning the probability estimation of an EWE occurring within a transportation network, the assessment of its impacts and the passengers’ flow shift between various transport modes. A mathematical formulation for the proposed data-driven method is provided and applied in an indicative European small-scale network, in order to assess the impacts of EWE on modal choice. Results are expressed in passenger differentiated flows and the paper concludes with future research steps and directions.  相似文献   

7.
Transit systems are subject to congestion that influences system performance and level of service. The evaluation of measures to relieve congestion requires models that can capture their network effects and passengers' adaptation. In particular, on‐board congestion leads to an increase of crowding discomfort and denied boarding and a decrease in service reliability. This study performs a systematic comparison of alternative approaches to modelling on‐board congestion in transit networks. In particular, the congestion‐related functionalities of a schedule‐based model and an agent‐based transit assignment model are investigated, by comparing VISUM and BusMezzo, respectively. The theoretical background, modelling principles and implementation details of the alternative models are examined and demonstrated by testing various operational scenarios for an example network. The results suggest that differences in modelling passenger arrival process, choice‐set generation and route choice model yield systematically different passenger loads. The schedule‐based model is insensitive to a uniform increase in demand or decrease in capacity when caused by either vehicle capacity or service frequency reduction. In contrast, nominal travel times increase in the agent‐based model as demand increases or capacity decreases. The marginal increase in travel time increases as the network becomes more saturated. Whilst none of the existing models capture the full range of congestion effects and related behavioural responses, existing models can support different planning decisions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
We propose a route choice model that relaxes the independence from irrelevant alternatives property of the logit model by allowing scale parameters to be link specific. Similar to the recursive logit (RL) model proposed by Fosgerau et al. (2013), the choice of path is modeled as a sequence of link choices and the model does not require any sampling of choice sets. Furthermore, the model can be consistently estimated and efficiently used for prediction.A key challenge lies in the computation of the value functions, i.e. the expected maximum utility from any position in the network to a destination. The value functions are the solution to a system of non-linear equations. We propose an iterative method with dynamic accuracy that allows to efficiently solve these systems.We report estimation results and a cross-validation study for a real network. The results show that the NRL model yields sensible parameter estimates and the fit is significantly better than the RL model. Moreover, the NRL model outperforms the RL model in terms of prediction.  相似文献   

9.
Foresee traffic conditions and demand is a major issue nowadays that is very often approached using simulation tools. The aim of this work is to propose an innovative strategy to tackle such problem, relying on the presentation and analysis of a behavioural dynamic traffic assignment.The proposal relies on the assumption that travellers take routing policies rather than paths, leading us to introduce the possibility for each simulated agent to apply, in real time, a strategy allowing him to possibly re-route his path depending on the perceived local traffic conditions, jam and/or time already spent in his journey.The re-routing process allows the agents to directly react to any change in the road network. For the sake of simplicity, the agents’ strategy is modelled with a simple neural network whose parameters are determined during a preliminary training stage. The inputs of such neural network read the local information about the route network and the output gives the action to undertake: stay on the same path or modify it. As the agents use only local information, the overall network topology does not really matter, thus the strategy is able to cope with large and not previously explored networks.Numerical experiments are performed on various scenarios containing different proportions of trained strategic agents, agents with random strategies and non strategic agents, to test the robustness and adaptability to new environments and varying network conditions. The methodology is also compared against existing approaches and real world data. The outcome of the experiments suggest that this work-in-progress already produces encouraging results in terms of accuracy and computational efficiency. This indicates that the proposed approach has the potential to provide better tools to investigate and forecast drivers’ choice behaviours. Eventually these tools can improve the delivery and efficiency of traffic information to the drivers.  相似文献   

10.
Understanding travellers’ behaviour is key element in transportation planning. This article presents a route choice model for metro networks that considers different time components as well as variables related to the transferring experience, train crowding, network topology and socio-demographic characteristics. The route choice model is applied to the London Underground and Santiago Metro networks, to make a comparison of the decision making process of the users on both cities. As all the variables are statistically significant, it is possible to affirm that public transport users take into account a wide variety of elements when choosing routes. While in London the travellers prefer to spend time walking, in Santiago is preferable to spend time waiting. Santiago Metro users are more willing to travel in crowded trains than London Underground users. Both user groups have a similar dispreference to transfers after controlling for the time spent on transfer, but different attitudes to ascending and descending transfers. Topological factors presented on a distorted Metro map are more important than actual topology to passengers’ route choice decisions.  相似文献   

11.
Previous route choice studies treated uncertainties as randomness; however, it is argued that other uncertainties exist beyond random effects. As a general modeling framework for route choice under uncertainties, this paper presents a model of route choice that incorporates hyperpath and network generalized extreme-value-based link choice models. Accounting for the travel time uncertainty, numerical studies of specified models within the proposed framework are conducted. The modeling framework may be helpful in various research contexts dealing with both randomness and other non-probabilistic uncertainties that cannot be exactly perceived.  相似文献   

12.
We propose a dynamic linear model (DLM) for the estimation of day‐to‐day time‐varying origin–destination (OD) matrices from link counts. Mean OD flows are assumed to vary over time as a locally constant model. We take into account variability in OD flows, route flows, and link volumes. Given a time series of observed link volumes, sequential Bayesian inference is applied in order to estimate mean OD flows. The conditions under which mean OD flows may be estimated are established, and computational studies on two benchmark transportation networks from the literature are carried out. In both cases, the DLM converged to the unobserved mean OD flows when given sufficient observations of traffic link volumes despite assuming uninformative prior OD matrices. We discuss limitations and extensions of the proposed DLM. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
The deficiencies in the Istanbul transportation system have led the local authorities to plan several alternative transportation projects. In this paper three alternative rail transit network proposals are evaluated by using Analytic Hierarchy Process (AHP), a multiple criteria decision support system. The AHP facilitates decision-making by organizing perceptions, experiences, knowledge and judgments, the forces that influence the decision, into a hierarchical framework with a goal, scenarios, criteria and alternatives of choice. Based on this analysis, the decision makers have developed a new alternative as a combination of the most closely competing two alternative rail transit networks. This combination rail transit network is currently under construction.  相似文献   

14.
This paper presents a dynamic network‐based approach for short‐term air traffic flow prediction in en route airspace. A dynamic network characterizing both the topological structure of airspace and the dynamics of air traffic flow is developed, based on which the continuity equation in fluid mechanics is adopted to describe the continuous behaviour of the en route traffic. Building on the network‐based continuity equation, the space division concept in cell transmission model is introduced to discretize the proposed model both in space and time. The model parameters are sequentially updated based on the statistical properties of the recent radar data and the new predicting results. The proposed method is applied to a real data set from Shanghai Area Control Center for the short‐term air traffic flow prediction both at flight path and en route sector level. The analysis of the case study shows that the developed method can characterize well the dynamics of the en route traffic flow, thereby providing satisfactory prediction results with appropriate uncertainty limits. The mean relative prediction errors are less than 0.10 and 0.14, and the absolute errors fall in the range of 0 to 1 and 0 to 3 in more than 95% time intervals respectively, for the flight path and en route sector level. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
We present an operational estimation procedure for the estimation of route choice multivariate extreme value (MEV) models based on sampling of alternatives. The procedure builds on the state-of-the-art literature, and in particular on recent methodological developments proposed by Flötteröd and Bierlaire (2013) and Guevara and Ben-Akiva (2013b). Case studies on both synthetic data and a real network demonstrate that the new method is valid and practical.  相似文献   

16.
The level of service on public transit routes is very much affected by the frequency and vehicle capacity. The combined values of these variables contribute to the costs associated with route operations as well as the costs associated with passenger comfort, such as waiting and overcrowding. The new approach to the problem that we introduce combines both passenger and operator costs within a generalized newsvendor model. From the passenger perspective, waiting and overcrowding costs are used; from the operator’s perspective, the costs are related to vehicle size, empty seats, and lost sales. Maximal passenger average waiting time as well as maximal vehicle capacity are considered as constraints that are imposed by the regulator to assure a minimal public transit service level or in order to comply with other regulatory considerations. The advantages of the newsvendor model are that (a) costs are treated as shortages (overcrowding) and surpluses (empty seats); (b) the model presents simultaneous optimal results for both frequency and vehicle size; (c) an efficient and fast algorithm is developed; and (d) the model assumes stochastic demand, and is not restricted to a specific distribution. We demonstrate the usefulness of the model through a case study and sensitivity analysis.  相似文献   

17.
This paper proposes a bi-level model for traffic network signal control, which is formulated as a dynamic Stackelberg game and solved as a mathematical program with equilibrium constraints (MPEC). The lower-level problem is a dynamic user equilibrium (DUE) with embedded dynamic network loading (DNL) sub-problem based on the LWR model (Lighthill and Whitham, 1955; Richards, 1956). The upper-level decision variables are (time-varying) signal green splits with the objective of minimizing network-wide travel cost. Unlike most existing literature which mainly use an on-and-off (binary) representation of the signal controls, we employ a continuum signal model recently proposed and analyzed in Han et al. (2014), which aims at describing and predicting the aggregate behavior that exists at signalized intersections without relying on distinct signal phases. Advantages of this continuum signal model include fewer integer variables, less restrictive constraints on the time steps, and higher decision resolution. It simplifies the modeling representation of large-scale urban traffic networks with the benefit of improved computational efficiency in simulation or optimization. We present, for the LWR-based DNL model that explicitly captures vehicle spillback, an in-depth study on the implementation of the continuum signal model, as its approximation accuracy depends on a number of factors and may deteriorate greatly under certain conditions. The proposed MPEC is solved on two test networks with three metaheuristic methods. Parallel computing is employed to significantly accelerate the solution procedure.  相似文献   

18.
This paper describes a connected-vehicle-based system architecture which can provide more precise and comprehensive information on bus movements and passenger status. Then a dynamic control method is proposed using connected vehicle data. Traditionally, the bus bunching problem has been formulated into one of two types of optimization problem. The first uses total passenger time cost as the objective function and capacity, safe headway, and other factors as constraints. Due to the large number of scenarios considered, this type of framework is inefficient for real-time implementation. The other type uses headway adherence as the objective and applies a feedback control framework to minimize headway variations. Due to the simplicity in the formulation and solution algorithms, the headway-based models are more suitable for real-time transit operations. However, the headway-based feedback control framework proposed in the literature still assumes homogeneous conditions at all bus stations, and does not consider restricting passenger loads within the capacity constraints. In this paper, a dynamic control framework is proposed to improve not only headway adherence but also maintain the stability of passenger load within bus capacity in both homogenous and heterogeneous situations at bus stations. The study provides the stability conditions for optimal control with heterogeneous bus conditions and derives optimal control strategies to minimize passenger transit cost while maintaining vehicle loading within capacity constraints. The proposed model is validated with a numerical analysis and case study based on field data collected in Chengdu, China. The results show that the proposed model performs well on high-demand bus routes.  相似文献   

19.
The paper proposes a multi-class control scheme for freeway traffic networks. This control scheme combines two control strategies, i.e. ramp metering and route guidance, in order to reduce the total time spent and the total emissions in a balanced way. In particular, the ramp metering and route guidance controllers are feedback predictive controllers, i.e. they compute the control actions not only on the basis of the measured system state, but also on the basis of the prediction of the system evolution, in terms of traffic conditions and traffic emissions. Another important feature of the controllers is that they have a multi-class nature: different classes of vehicles are considered and specific control actions are computed for each class. Since the controllers are based on a set of parameters that need to be tuned, the overall control framework also includes a module to properly determine the gains of the controllers. The simulation analysis reported in the paper shows the effectiveness of the proposed control framework and, in particular, the possibility of implementing control policies that are specific for each vehicle type.  相似文献   

20.
Abstract

In this paper a route-based dynamic deterministic user equilibrium assignment model is presented. Some features of the linear travel time model are first investigated and then a divided linear travel time model is proposed for the estimation of link travel time: it addresses the limitations of the linear travel time model. For the application of the proposed model to general transportation networks, this paper provides thorough investigations on the computational issues in dynamic traffic assignment with many-to-many OD pairs and presents an efficient solution procedure. The numerical calculations demonstrate that the proposed model and solution algorithm produce satisfactory solutions for a network of substantial size with many-to-many OD pairs. Comparisons of assignment results are also made to show the impacts of incorporation of different link travel time models on the assignment results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号