共查询到3条相似文献,搜索用时 15 毫秒
1.
The accuracy of travel time information given to passengers plays a key role in the success of any Advanced Public Transportation Systems (APTS) application. In order to improve the accuracy of such applications, one should carefully develop a prediction method. A majority of the available prediction methods considered the variation in travel time either spatially or temporally. The present study developed a prediction method that considers both temporal and spatial variations in travel time. The conservation of vehicles equation in terms of flow and density was first re-written in terms of speed in the form of a partial differential equation using traffic stream models. Then, the developed speed based equation was discretized using the Godunov scheme and used in the prediction scheme that was based on the Kalman filter. From the results, it was found that the proposed method was able to perform better than historical average, regression, and ANN methods and the methods that considered either temporal or spatial variations alone. Finally, a formulation was developed to check the effect of side roads on prediction accuracy and it was found that the additional requirement in terms of location based data did not result in an appreciable change in the prediction accuracy. This clearly demonstrated that the proposed approach based on using vehicle tracking data is good enough for the considered application of bus travel time prediction. 相似文献
2.
The uncertainty associated with public transport services can be partially counteracted by developing real‐time models to predict downstream service conditions. In this study, a hybrid approach for predicting bus trajectories by integrating multiple predictors is proposed. The prediction model combines schedule, instantaneous and historical data. The contribution of each predictor as well as values of respective parameters is estimated by minimizing the prediction error using a linear regression heuristic. The hybrid method was applied to five bus routes in Stockholm, Sweden, and Brisbane, Australia. The results indicate that the hybrid method consistently outperforms the timetable and delay conservation prediction method for different route layouts, passenger demands and operation practices. Model validation confirms model transferability and real‐time applicability. Generating more accurate predictions can help service users adjust their travel plans and service providers to deploy proactive management and control strategies to mitigate the negative effects of service disturbances. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
3.
The focus of this paper is to learn the daily activity engagement patterns of travelers using Support Vector Machines (SVMs), a modeling approach that is widely used in Artificial intelligence and Machine Learning. It is postulated that an individual’s choice of activities depends not only on socio-demographic characteristics but also on previous activities of individual on the same day. In the paper, Markov Chain models are used to study the sequential choice of activities. The dependencies among activity type, activity sequence and socio-demographic data are captured by employing hidden Markov models. In order to learn model parameters, we use sequential multinomial logit models (MNL) and multiclass Support Vector Machines (K-SVM) with two different dependency structures. In the first dependency structure, it is assumed that type of activity at time ‘t’ depends on the last previous activity and socio-demographic data, whereas in the second structure we assume that activity selection at time ‘t’ depends on all of the individual’s previous activity types on the same day and socio-demographic characteristics. The models are applied to data drawn from a set of California households and a comparison of the accuracy of estimation of activity types and their sequence in the agenda, indicates the superiority of K-SVM models over MNL. Additionally, we show that accuracy in estimating activity patterns increases using different sets of explanatory variables or tuning parameters of the kernel function in K-SVM. 相似文献