首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.

In urban areas where transit demand is widely spread, passengers may be served by an intermodal transit system, consisting of a rail transit line (or a bus rapid transit route) and a number of feeder routes connecting at different transfer stations. In such a system, passengers may need one or more transfers to complete their journey. Therefore, scheduling vehicles operating in the system with special attention to reduce transfer time can contribute significantly to service quality improvements. Schedule synchronization may significantly reduce transfer delays at transfer stations where various routes interconnect. Since vehicle arrivals are stochastic, slack time allowances in vehicle schedules may be desirable to reduce the probability of missed connections. An objective total cost function, including supplier and user costs, is formulated for optimizing the coordination of a general intermodal transit network. A four-stage procedure is developed for determining the optimal coordination status among routes at every transfer station. Considering stochastic feeder vehicle arrivals at transfer stations, the slack times of coordinated routes are optimized, by balancing the savings from transfer delays and additional cost from slack delays and operating costs. The model thus developed is used to optimize the coordination of an intermodal transit network, while the impact of a range of factors on coordination (e.g., demand, standard deviation of vehicle arrival times, etc) is examined.  相似文献   

2.
Abstract

In this paper, a methodology for capturing the transit passenger’s point of view by using both rating and choice options is proposed. For this purpose, some discrete choice logit models are introduced; the models allow the probability of choice of some alternative transit services to be calculated, and the importance of each service aspect to be determined. The models are calibrated by using data collected by a survey in which a stated preferences experiment was proposed to a sample of passengers, and some judgements were expressed by them about their transit services, in terms of perceptions and expectations. The introduced methodology provides a relevant contribution from a practical viewpoint because it allows the identification of the most important aspects on overall service quality; it is useful to the transit operators for measuring service quality and for investing on the various service aspects in order to effectively improve transit services.  相似文献   

3.
《运输规划与技术》2012,35(8):848-867
ABSTRACT

This study introduces a framework to improve the utilization of new data sources such as automated vehicle location (AVL) and automated passenger counting (APC) systems in transit ridership forecasting models. The direct application of AVL/APC data to travel forecasting requires an important intermediary step that links stops and activities – boarding and alighting – to the actual locations (at the traffic analysis zone (TAZ) level) that generated/attracted these trips. GIS-based transit trip allocation methods are developed with a focus on considering the case when the access shed spans multiple TAZs. The proposed methods improve practical applicability with easily obtained data. The performance of the proposed allocation methods is further evaluated using transit on-board survey data. The results show that the methods can effectively handle various conditions, particularly for major activity generators. The average errors between observed data and the proposed method are about 8% for alighting trips and 18% for boarding trips.  相似文献   

4.
Abstract

This paper revisits the classical transit scheduling problem and investigates the relationship between stop spacing and headway, considering realistic wait time and operable transit capacity. Headway and stop spacing are important determinants for planning a transit system, which influence the service level as well as the cost of operation. A mathematical model is developed, and the objective function is user travel time which is minimized by the optimized stop spacing and headway, subject to the constraints of operable fleet size and route capacity. Optimal stop spacing and headway solutions are obtained in a numerical example. Sensitivity analysis is conducted, and the effect of model parameters on user travel time is explored.  相似文献   

5.
This paper assesses the demand for a flexible, demand-adaptive transit service, using the Chicago region as an example. We designed and implemented a stated-preference survey in order to (1) identify potential users of flexible transit, and (2) inform the service design of the flexible transit mode. Multinomial logit, mixed-logit, and panel mixed-logit choice models were estimated using the data obtained from the survey. The survey instrument employed a dp-efficient design and the Google Maps API to capture precise origins and destinations in order to create realistic choice scenarios. The stated-preference experiments offered respondents a choice between traditional transit, car, and a hypothetical flexible transit mode. Wait time, access time, travel time, service frequency, cost, and number of transfers varied across the choice scenarios. The choice model results indicate mode-specific values of in-vehicle travel time ranging between $16.3 per hour (car) and $21.1 per hour (flexible transit). The estimated value of walking time to transit is $25.9 per hour. The estimated value of waiting time at one’s point of origin for a flexible transit vehicle is $11.3 per hour; this value is significantly lower than the disutility typically associated with waiting at a transit stop/station indicating that the ‘at-home’ pick-up option of flexible transit is a highly desirable feature. The choice model results also indicate that respondents who use active-transport modes or public transit for their current commute trip, or are bikeshare members, were significantly more likely to choose flexible and traditional transit than car commuters in the choice experiments. The implications of these and other relevant model results for the design and delivery of flexible, technology-enabled services are discussed.  相似文献   

6.

Coastal and inland feeder shipping is a critical factor for intercontinental container transport. The question is whether each intercontinental terminal should be equipped with its own service stations for feeder shipping, or whether pooling of the facilities would be more effective. For this paper, the service station examined for the service of feeder ships is equipped with two quay cranes operating in parallel supported by a small active quay stack. The centre for this feeder service consists of several of these stations. Simulation shows that a crane productivity of 96% is feasible with an average vehicle waiting time of 1 min, that a central service requires fewer service stations than a distributed service and that the quay transport for central and distributed transport requires the same number of terminal vehicles. The analysis shows that a centralized service is preferable, attracting 70% of the market potential.  相似文献   

7.
Bus stops are integral elements of a transit system and as such, their efficient inspection and maintenance is required, for proper and attractive transit operations. Nevertheless, spatial dispersion and the extensive number of bus stops, even for mid-size transit systems, complicates scheduling of inspection and maintenance tasks. In this context, the problem of scheduling transit stop inspection and maintenance activities (TSIMP) by a two-stage optimization approach, is formulated and discussed. In particular, the first stage involves districting of the bus stop locations into areas of responsibility for different inspection and maintenance crews (IMCs), while in the second stage, determination of the sequence of bus stops to be visited by an IMC is modelled as a vehicle routing problem. Given the complexity of proposed optimization models, advanced versions of different metaheuristic algorithms (Harmony Search and Ant Colony Optimization) are exploited and assessed as possible options for solving these models. Furthermore, two variants of ACO are implemented herein; one implemented into a CPU parallel computing environment along with an accelerated one by means of general-purpose graphics processing unit (GPGPU) computing. The model and algorithms are applied to the Athens (Greece) bus system, whose extensive number of transit stops (over 7500) offers a real-world test bed for assessing the potential of the proposed modelling approach and solution algorithms. As it was shown for the test example examined, both algorithms managed to achieve optimized solutions for the problem at hand while there were fund robust with respect to their algorithmic parameters. Furthermore, the use of graphics processing units (GPU) managed to reduce of computational time required.  相似文献   

8.
The first analytical stochastic and dynamic model for optimizing transit service switching is proposed for “smart transit” applications and for operating shared autonomous transit fleets. The model assumes a region that requires many-to-one last mile transit service either with fixed-route buses or flexible-route, on-demand buses. The demand density evolves continuously over time as an Ornstein-Uhlenbeck process. The optimal policy is determined by solving the switching problem as a market entry and exit real options model. Analysis using the model on a benchmark computational example illustrates the presence of a hysteresis effect, an indifference band that is sensitive to transportation system state and demand parameters, as well as the presence of switching thresholds that exhibit asymmetric sensitivities to transportation system conditions. The proposed policy is computationally compared in a 24-hour simulation to a “perfect information” set of decisions and a myopic policy that has been dominant in the flexible transit literature, with results that suggest the proposed policy can reduce by up to 72% of the excess cost in the myopic policy. Computational experiments of the “modular vehicle” policy demonstrate the existence of an option premium for having flexibility to switch between two vehicle sizes.  相似文献   

9.
This article presents a route choice model for public transit networks that incorporates variables related to network topology, complementing those found in traditional models based on service levels (travel time, cost, transfers, etc.) and users’ socioeconomic and demographic characteristics (income level, trip purpose, etc.). The topological variables represent concepts such as the directness of the chosen route and user knowledge of the network. For both of these factors, the necessary data is endogenous to the modelling process and can be quantified without the need for information-gathering beyond what is normally required for building route choice models. Other novel variables in the proposed formulation capture notions of user comfort such as vehicle occupancy rates and certain physical characteristics of network stations. We conclude that these new variables significantly improve the explanatory and predictive ability of existing route choice specifications.  相似文献   

10.
ABSTRACT

The quality of traffic information has become one of the most important factors that can affect the distribution of urban and highway traffic flow by changing the travel route, transportation mode, and travel time of travelers and trips. Past research has revealed traveler behavior when traffic information is provided. This paper summarizes the related study achievements from a survey conducted in the Beijing area with a specially designed questionnaire considering traffic conditions and the provision of traffic information services. With the survey data, a Logit model is estimated, and the results indicate that travel time can be considered the most significant factor that affects highway travel mode choice between private vehicles and public transit, whereas trip purpose is the least significant factor for private vehicle usage for both urban and highway travel.  相似文献   

11.
Abstract

In large metropolitan areas, public transit is a major mode choice of commuters for their daily travel, which has an important role in relieving congestion on transportation corridors. The purpose of this study is to develop a model which optimizes service patterns (SPs) and frequencies that yield minimum cost transit operation. Considering a general transit route with given stops and origin-destination demand, the proposed model consists of an objective total cost function and a set of constraints to ensure frequency conservation and sufficient capacity subject to operable fleet size. A numerical example is provided to demonstrate the effectiveness of the developed model, in which the demand and facility data of a rail transit route were given. Results show that the proposed model can be applied to optimize integrated SPs and headways that significantly reduce the total cost, while the resulting performance indicators are generated.  相似文献   

12.
Abstract

Transit agencies are consistently trying to improve service reliability and attract new passengers by employing various strategies. Previous literature reviews have focused on either passengers' or transit agencies' perspectives on service reliability. However, none of the earlier reviews have simultaneously addressed these differing perspectives on service reliability in an integrated manner. In response to this gap in the literature, this paper first reviews previous work on passengers' perspectives of transit service reliability and their response to service adjustments made by different agencies. Second, it analyzes transit agencies' plans and reports regarding their reliability goals and used strategies in order to improve service reliability, while looking at the impacts of these strategies on service. Reviewing these two parts together provides a needed contribution to the literature from a practical viewpoint since it allows for the identification of gaps in the public transit planning and operations field in the area of reliability and provides transit planners and decision makers with effective and valuable policy-relevant information.  相似文献   

13.
Bus transit is often promoted as a green form of transportation, but surprisingly little research has been done on how to run transit systems in a green manner. Both vehicle task assignment and purchase models are generally constructed to minimize financial costs. Integrating vehicle task assignment with purchase decisions is made challenging by the different time scales involved. An integer programming approach is used to combine vehicle purchase, retrofit and aggregated task assignment decisions. The formulation is designed to operate in sequence with traditional vehicle task assignment models, to add emissions and long term financial cost elements to the objective, while maintaining computational tractability and feasible input data requirements. In a case study, a transit agency saves money in the long term by using stimulus money to buy CNG infrastructure instead of purchasing only new buses. Carbon prices up to $400/(ton CO2 equivalent) do not change vehicle purchase decisions, but higher carbon prices can cause more diesel hybrid purchases, at a high marginal cost. Although the motivation and numerical case study are from the US transit industry, the model is formulated to be widely applicable to green fleet management in multiple contexts.  相似文献   

14.
A unique set of activity scheduling data is utilized in this paper to provide much needed empirical analysis of the sequence in which activities are planned in everyday life. This is used to assess the validity of the assumption that activities are planned in accordance to a fixed hierarchy of activity types: mandatory activities first (work/school), followed by joint maintenance, joint discretionary, allocated maintenance, and individual discretionary activities. Such an assumption is typical of current generation activity and tour-based travel demand models. However, the empirical results clearly do not support such assumptions. For instance, fewer than 50% of mandatory activities were actually planned first in related out-of-home tours; remaining activity types also did not take any particular precedence in the planning sequence. Given this, a search was made for the more salient attributes of activities (beyond activity type) that would better predict how they are planned within tours. Several ordered response choice models for different tour sizes were developed for this purpose, predicting the choice order of the 1st, 2nd, 3rd, etc. planned activity in the tour as a function of activity type, activity characteristics (duration, frequency, travel time, and involved persons), and individual characteristics. Activity duration played the most significant role in the models compared to any other single variable, wherein longer duration activities tended to be planned much earlier in tours. This strongly suggests that the amount of time-use, rather than the nature of the event as indicated by activity type, is a primary driver of within-tour planning order and offers potential for a much improved and valid fit.  相似文献   

15.
Abstract

Providing efficient public transportation has been recognized as a potential way of alleviating congestion, improving mobility, mitigating air pollution, and reducing energy consumption. Many people use public transportation systems for their daily commute, while others use different transportation modes (e.g. cars, taxis, carpools, etc.). Inexpensive fares with good transit service encourages ridership, and the resulting revenue may be used to provide better service. Optimization of transit service frequency and its associated fare structure is desirable in order to increase revenue at reasonable transit operating expenditure. The objective of the study reported here is to maximize profit subject to service capacity constraint, while elastic demand is considered. The solution methodology is developed and applied to solve the profit maximization problem in a case study based on Newark, NJ, USA. Numerical results, including optimal solutions and sensitivity analyses, are presented. It is found that an optimal temporal headway and differential fare structure that maximizes total profit for the studied subway system can be efficiently solved.  相似文献   

16.

Railway scheduling faces new challenges as competition and, in many parts of the world, privatisation require ever better results, both in terms of minimising the resources used and maximising the performance achieved by those resources. It is therefore surprising that in practice railway scheduling tasks appear to be performed largely without the use of optimizing models. This paper takes two different perspectives, a case study of user needs from the UK railway industry and a comparative analysis with mass transit scheduling systems, to consider why this might be and assesses what the future prospects are for computer aided railway scheduling.

A number of conclusions are drawn: that optimization models need to be integrated with software packages that meet schedulers' data management needs; that researchers need to work with commercial developers to achieve this integration; that there needs to be an emphasis on extending models to cover more real‐life circumstances; and that solutions with international applicability should be sought.  相似文献   

17.
Dong  Xiaoxia  DiScenna  Matthew  Guerra  Erick 《Transportation》2019,46(1):35-50

This paper reports the results of a stated preference survey of regular transit users’ willingness to ride and concerns about driverless buses in the Philadelphia region. As automated technologies advance, driverless buses may offer significant efficiency, safety, and operational improvements over traditional bus services. However, unfamiliarity with automated vehicle technology may challenge its acceptance among the general public and slow the adoption of new technologies. Using a mixed logit modeling framework, this research examines which types of transit users are most willing to ride in driverless buses and whether having a transit employee on board to monitor the vehicle operations and/or provide customer service matters. Of the 891 surveyed members of University of Pennsylvania’s transit pass benefit program, two-thirds express a willingness to ride in a driverless bus when a transit employee is on board to monitor vehicle operations and provide customer service. By contrast, only 13% would agree to ride a bus without an employee on board. Males and those in younger age groups (18–34) are more willing to ride in driverless buses than females and those in older age groups. Findings suggest that, so long as a transit employee is onboard, many transit passengers will willingly board early generation automated buses. An abrupt shift to buses without employees on board, by contrast, will likely alienate many transit users.

  相似文献   

18.
ABSTRACT

Efficient planning for demand responsive transit (DRT) can contribute to fulfilling the first/last mile transport needs for users of a major transit line. With the advancement in communication technologies, the internet is expected to assist this growing need of providing first/last mile connectivity. This is proposed to be achieved through a network created by Internet of Things (IoT). This paper evaluates the effect of implementation of IoT on service quality (or disutility) of DRT for two scenarios – with enabled-IoT (e-IoT) and with disabled-IoT (d-IoT). Data from five different DRT-like systems known as Call-n-Ride (CnR) routes operating in Denver, Colorado, are used for evaluation purposes. These CnR routes are Meridian, Interlocken, South Inverness, Broomfield and Louisville. Results show that, in general, all CnR routes would experience more than a 58 percent decrease in disutility if their operations were based on ‘with e-IoT’ operations. Interlocken would record the largest percentage decrease (74 percent) in disutility if its route service switched from the ‘with d-IoT’ to the ‘with e-IoT’ scenario.  相似文献   

19.
Abstract

Walking from origins to transit stops, transferring between transit lines and walking from transit stops to destinations—all add to the burden of transit travel, sometimes to a very large degree. Transfers in particular can be stressful and/or time‐consuming for travellers, discouraging transit use. As such, transit facilities that reduce the burdens of walking, waiting and transferring can substantially increase transit system efficacy and use. In this paper, we argue that transit planning research on transit stops and stations, and transit planning practice frequently lack a clear conceptual framework relating transit waits and transfers with what we know about travel behaviour. Therefore, we draw on the concepts of transfer penalties and value of time in the travel behaviour/economics literature to develop a framework that situates transfer penalties within the total travel generalized costs of a transit trip. For example, value of time is important in relating actual time of waiting and walking to the perceived time of travel. We also draw on research to classify factors most important to users’ perspectives and travel behaviour—transfer costs, time scheduling and five transfer facility attributes: (1) access, (2) connection and reliability, (3) information, (4) amenities, and (5) security and safety. Using this framework, we seek to explicitly relate improvements of transfer stops/stations with components of transfer penalties and changes in travel behaviour (through a reduction in transfer penalties). We conclude that the employment of such a framework can help practitioners better apply the most effective improvements to transit stops and transfer facilities.  相似文献   

20.

This paper presents an artificial neural network (ANN) based method for estimating route travel times between individual locations in an urban traffic network. Fast and accurate estimation of route travel times is required by the vehicle routing and scheduling process involved in many fleet vehicle operation systems such as dial‐a‐ride paratransit, school bus, and private delivery services. The methodology developed in this paper assumes that route travel times are time‐dependent and stochastic and their means and standard deviations need to be estimated. Three feed‐forward neural networks are developed to model the travel time behaviour during different time periods of the day‐the AM peak, the PM peak, and the off‐peak. These models are subsequently trained and tested using data simulated on the road network for the City of Edmonton, Alberta. A comparison of the ANN model with a traditional distance‐based model and a shortest path algorithm is then presented. The practical implication of the ANN method is subsequently demonstrated within a dial‐a‐ride paratransit vehicle routing and scheduling problem. The computational results show that the ANN‐based route travel time estimation model is appropriate, with respect to accuracy and speed, for use in real applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号