共查询到2条相似文献,搜索用时 0 毫秒
1.
Flavien Balbo Suzanne Pinson 《Transportation Research Part C: Emerging Technologies》2010,18(1):140-156
This paper presents an agent-based approach used to design a Transportation Regulation Support System (TRSS), that reports the network activity in real-time and thus assists the bus network regulators. The objective is to combine the functionalities of the existing information system with the functionalities of a decision support system in order to propose a generic model of a traffic regulation support system. Unlike the other approaches that only deal with a specific task, the original feature of our generic model is that it proposes a global approach to the regulation function under normal conditions (network monitoring, dynamic timetable management) and under disrupted conditions (disturbance assessment and action planning of feasible solutions). Following the introduction, the second section presents the notions of the domain and highlights the main regulation problems. The third section details and motivates our choice of the components of the generic model. Based on our generic model, in the fourth section, we present a TRSS prototype called SATIR (Système Automatique de Traitement des Incidents en Réseau – Automatic System for Network Incident Processing) that we have developed. SATIR has been tested on the Brussels transportation network (STIB). The results are presented in the fifth section. Lastly, we show how using the multi-agent paradigm opens perspectives regarding the development of new functionalities to improve the management of a bus network. 相似文献
2.
The lack of a proper integration of strategic Air Traffic Management decision support tools with tactical Air Traffic Control interventions usually generates a negative impact on the Reference Business Trajectory adherence, and in consequence affects the potential of the Trajectory-Based Operations framework. In this paper, a new mechanism relaying on Reference Business Trajectories as a source of data to reduce the amount of Air Traffic Controller interventions at the tactical level while preserving Air Traffic Flow Management planned operations is presented. Artificial Intelligence can enable Constraint Programming as it is a powerful paradigm for solving complex, combinatorial search problems. The proposed methodology takes advantage of Constraint Programming and fosters adherence of Airspace User’s trajectory preferences by identifying tight interdependencies between trajectories and introducing a new mechanism to improve the aircraft separation at concurrence events considering time uncertainty. The underlying philosophy is to capitalize present degrees of freedom between layered Air Traffic Management planning tools, when sequencing departures at the airports by considering the benefits of small time stamp changes in the assigned Calculated Take-Off Time departures and to enhance Trajectory-Based Operations concepts. 相似文献