首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
This paper presents a novel application of static traffic assignment methods, but with a variable time value, for estimating the market share of high‐speed rail (HSR) in the northwest–southeast (NW–SE) corridor of Korea currently served by air, conventional rail and highway modes. The proposed model employs a time–space network structure to capture the interrelations among competing transportation modes, and to reflect their supply‐ and demand‐side constraints as well as interactions through properly formulated link‐node structures. The embedded cost function for each network link offers the flexibility for incorporating all associated factors, such as travel time and fare, in the model computation, and enables the use of a distribution rather than a constant to represent the time–value variation among all transportation mode users. To capture the value‐of‐time (VOT) of tripmakers along the target corridor realistically, this study has developed a calibration method with aggregate demand information and key system performance data from the NW–SE corridor.  相似文献   

2.
Vehicle classification systems have important roles in applications related to real‐time traffic management. They also provide essential data and necessary information for traffic planning, pavement design, and maintenance. Among various classification techniques, the length‐based classification technique is widely used at present. However, the undesirable speed estimates provided by conventional data aggregation make it impossible to collect reliable length data from a single‐point sensor during real‐time operations. In this paper, an innovative approach of vehicle classification will be proposed, which achieved very satisfactory results on a single‐point sensor. This method has two essential parts. The first concerns with the procedure of smart feature extraction and selection according to the proposed filter–filter–wrapper model. The model of filter–filter–wrapper is adopted to make an evaluation on the extracted feature subsets. Meanwhile, the model will determine a nonredundant feature subset, which can make a complete reflection on the differences of various types of vehicles. In the second part, an algorithm for vehicle classification according to the theoretical basis of clustering support vector machines (C‐SVMs) was established with the selected optimal feature subset. The paper also uses particle swarm optimization (PSO), with the purpose of searching for an optimal kernel parameter and the slack penalty parameter in C‐SVMs. A total of 460 samples were tested through cross validation, and the result turned out that the classification accuracy was over 99%. In summary, the test results demonstrated that our vehicle classification method could enhance the efficiency of machine‐learning‐based data mining and the accuracy of vehicle classification. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents a new data mining method that integrates adaptive B‐spline regression and traffic flow theory to develop multi‐regime traffic stream models (TSMs). Parameter estimation is implemented adaptively and optimally through a constrained bi‐level programming method. The slave programming determines positions of knots and coefficients of the B‐spline by minimizing the error of B‐spline regression. The master programming model determines the number of knots through a regularized function, which balances model accuracy and model complexity. This bi‐level programming method produces the best fitting to speed–density observations under specific order of splines and possesses great flexibility to accommodate the exhibited nonlinearity in speed–density relationships. Jam density can be estimated naturally using spline TSM, which is sometimes hardly obtainable in many other TSM. Derivative continuity up to one order lower than the highest spline degree can be preserved, a desirable property in some application. A five‐regime B‐spline model is found to exist for generalized speed–density relationships to accommodate five traffic operating conditions: free flow, transition, synchronized flow, stop and go traffic, and jam condition. A typical two‐regime B‐spline form is also explicitly given, depending only on free‐flow speed, optimal speed, optimal density, and jam density. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Data envelopment analysis (DEA) has become an established approach for analyzing and comparing efficiency results of corporate organizations or economic agents. It has also found wide application in comparative studies on airport efficiency. The standard DEA approach to comparative airport efficiency analysis has two feeble elements, viz. a methodological weakness and a substantive weakness. The methodological weakness originates from the choice of uniform efficiency improvement assessment, whereas the substantive weakness in airport efficiency analysis concerns the insufficient attention for short‐term and long‐term adjustment possibilities in the production inputs determining airport efficiency. The present paper aims to address both flaws by doing the following: (i) designing a data‐instigated distance friction minimization (DFM) model as a generalization of the standard Banker–Charnes–Cooper model with a view to the development of a more appropriate efficiency improvement projection model in the Banker–Charnes–Cooper version of DEA and (ii) including as factor inputs also lumpy or rigid factors that are characterized by short‐term indivisibility or inertia (and hence not suitable for short‐run flexible adjustment in new efficiency stages), as is the case for runways of airports. This so‐called fixed factor case will be included in the DFM submodel of the DEA. This extended DEA—with a DFM and a fixed factor component—will be applied to a comparative performance analysis of several major airports in Europe. Finally, our comparative study on airport efficiency analysis will be extended by incorporating also the added value of the presence of shopping facilities at airports for their relative economic performance. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Werner Brög 《运输评论》2013,33(4):359-365
Abstract

In April 1983, the “Fourth World Conference on Transport Research” was held in Hamburg. For a period of four days, experts from all parts of the world discussed transport research and planning problems. The discussions were divided into eight so‐called ‘sub‐topics’. Fortunately, one of the sub‐topics, ‘Man and his Transport Behaviour’ (chaired by Moshe Ben‐Akiva, U.S.A. and Werner Brög, Federal Republic of Germany) dealt with the individual and his behaviour. This complemented the traditionally supply‐oriented thinking of the transport planners by introducing the demand component which had frequently been neglected in the past. Since the view has become increasingly widespread that transport is meant to serve people, and thus, that research should emphasize the (potential) users of the transport system, the number of papers submitted and presented on this sub‐topic was especially large.

However, the number of papers which could be included in the ‘Conference Proceedings’ was limited and this would have meant that a number of interesting documents could not be published. Therefore, papers on four special areas within this sub‐topic are to be published in four consecutive issues of Transport Reviews. The areas which will be dealt with are ‘Telecommunications’, ‘Non‐Motorised Transport’, ‘Special Problems in Third World Countries’ and ‘Fare Structures in Public Transport’. The papers were selected strictly according to their contents. A brief commentary in each issue explains in turn the reasons for choosing each of the four subject areas.

Parts 1–3 appeared in Transport Reviews, 4, 99–113, 173–212, 273–298.  相似文献   

6.
The low‐luminance monotonous environment in the middle section of highway tunnels offers few reference points and is prone to cause severe visual illusion. Thus, drivers tend to underestimate their driving speed, which can induce speeding behaviors that result in rear‐end collisions. Therefore, discovering low‐cost methods of traffic engineering that reduce this visual illusion and ensure a steady driving speed is an important challenge for current highway tunnel operations. This study analyzes the effects of sidewall markings in typical highway tunnels, specifically observing how their colors and temporal frequencies affect the driver's speed perception in a low‐luminance condition. A three‐dimensional model of the middle section of highway tunnels was built in a driving simulator. Psychophysical tests of speed perception were carried out by the method of limits. The precision of the simulation model was then checked by comparing the results to field test data. The simulation tests studied the stimulus of subjectively equal speed and reaction time in relation to sidewall markings in different colors (red–white combined, yellow–white combined, and blue–white combined). Furthermore, based on the optimal color, the effects of sidewall marking with different temporal frequencies (0.4, 0.8, 1.2, 2, 4, 8, 12, 16, and 32 Hz) on the speed perception of drivers were also analyzed. The test results reveal that the color and temporal frequency of sidewall marking have a significant impact on the driver's stimulus of subjectively equal speed and reaction time. The subjects have the highest speed overestimation and an easy speed judgment with the red–white combined sidewall marking. Within the temporal frequency range of 4.45–7.01 Hz, the subjects have a certain degree of speed overestimation (less than 20%), and the speed perception is sensitive to the temporal frequency changes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents a micro‐simulation modeling framework for evaluating pedestrian–vehicle conflicts in crowded crossing areas. The framework adopts a simulation approach that models vehicles and pedestrians at the microscopic level while satisfying two sets of constraints: (1) flow constraints and (2) non‐collision constraints. Pedestrians move across two‐directional cells as opposed to one‐dimensional lanes as in the case of vehicles; therefore, extra caution is considered when modeling the shared space between vehicles and pedestrians. The framework is used to assess large‐scale pedestrian–vehicle conflicts in a highly congested ring road in the City of Madinah that carries 20 000 vehicles/hour and crossed by 140 000 pedestrians/hour after a major congregational prayer. The quantitative and visual results of the simulation exhibits serious conflicts between pedestrians and vehicles, resulting in considerable delays for pedestrians crossing the road (9 minutes average delay) and slow traffic conditions (average speed <10 km/hour). The model is then used to evaluate the following three mitigating strategies: (1) pedestrian‐only phase; (2) grade separation; and (3) pedestrian mall. A matrix of operational measures of effectiveness for network‐wide performance (e.g., average travel time, average speed) and for pedestrian‐specific performance (e.g., mean speed, mean density, mean delay, mean moving time) is used to assess the effectiveness of the proposed strategies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Hub‐and‐spoke networking is a key feature of current aviation markets in which hubs, as connecting points, function to consolidate and redistribute flows. This indicates that observation of traffic on a segment does not necessarily convey information about the origin to destination routing of passenger journeys because of the unavoidable detours in the system. This paper examines the heterogeneity of the flow composition in domestic and international US markets, which in turn allows us to observe the variation of operations across major hubs. A modified Route Flow Estimator for origin–destination synthesis (or origin–destination matrix estimation) is designed to decompose the segment traffic into itinerary‐based passenger trips. Several public and commercial databases, which are easily accessible, are exploited (and reconciled) for the model in order to (i) generate possible trip itineraries using those segment markets, and (ii) link data‐driven operational conditions with the underlying segment flows. The results are validated with US domestic trip observations and empirical knowledge related to the air transportation system. Then, the variability of the hub operations is examined based on sensitivity tests using the model parameters. From the resolution of itinerary‐based estimates, we observe that major airports' hub operations are spatially uneven, particularly with respect to domestic and international connecting passengers. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
In the field of traffic flow, speed, density, time, and distance are fundamental variables analyzed to predict traffic conditions. Reliable sources of information are gauged using tested mathematical approaches that have been developed. However, a fundamental diagram that could serve as a basis for expression techniques has not been devised. Red–green–blue (RGB) color modeling was used to overcome this limitation in traffic flow. The purpose of this study is to provide a way to understand traffic flow conditions based on features of three traffic flow elements simultaneously. The limitation of three‐dimensional expressions in two‐dimensional paper was extended to multi‐dimensional information. Information on speed, density, and flow were combined into a single RGB color and given the name RGB flow‐density space time‐distance space. This cancels out the effect of each individual's vehicular trajectories and contains five major components of a specific road section. The new gizmo aims to provide information on traffic flow conditions in transition and to stimulate further approaches related to the predictions and understanding of traffic flow. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Abstract

This article investigates the role of bus rapid transit as a tool for mitigation of transport‐related carbon dioxide (CO2) emissions. We analyse a Quality Bus Corridor (QBC) implemented in Dublin, Ireland, in 1999 and estimate CO2 emissions associated with differing levels of bus priority for the period 1998–2003 and for the Kyoto commitment period (2008–12). Associated monetary values are established using CO2 prices from the European Union Emissions Trading Scheme. We find that, in the absence of a QBC, peak‐time emissions for our sample population would have been 50% higher than in the factual scenario. For the Kyoto commitment period, we find the median value of the policy implementation to be in the region of [euro]650 000.  相似文献   

11.
Abstract

Slow‐moving vehicles, including agricultural vehicles, on arterial highways can cause serious delays to other traffic as well as posing an extra safety risk. This paper elaborates on a small‐scale solution for these problems: the passing bay. It investigates the impacts of a passing bay on the total delay for other motorized vehicles, the number of passing manoeuvres and hindered vehicles, and the mean delay per hindered vehicle. The latter is also considered to be an indicator for traffic safety. The calculations are performed for two characteristic trips with a slow‐moving vehicle. The passing bay is an effective solution to reducing delays on arterial highways when two‐way hourly volumes exceed 600–1000 vehicles. The effects depend on the trip length and speed of the slow‐moving vehicle, and on the passing sight distance limitations of the road. A distance of 2–4?km between the passing bays seems an acceptable compromise between the reduction of delay for other motorized vehicles and the extra discomfort and delay for drivers of slow‐moving vehicles. This result also shows that passing bays are not effective in regions where slow‐moving vehicles mainly make trips shorter than this distance.  相似文献   

12.
Financial constraints and lack of availability of traffic‐related information significantly hinder the development of driving cycles in developing countries. This paper proposes an economical, practical, accurate methodology for the development of driving cycles, including the development of a driving cycle for Colombo, Sri Lanka. The proposed methodology captures regional traffic and road conditions and selects a model that represents the collected data sample with minimum available traffic‐related information. Existing methods were modified for route selection by dividing routes into links using nodes or physical junctions to minimize the number of trips required for data collection. Speed–time data for respective links were used to reconstruct speed–time profiles of identified origin–destination pairs. The on‐board method was used for data collection, and the Markov chain theory was used to develop a transition probability matrix of state changes. An additional matrix was introduced to the existing method to improve model representativeness to the collected data sample. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
The article presents an element increment method that is developed by current time increment method of train traction calculation. A railway route was divided, breaking it down into elements of different lengths. A whole train movement simulation curve (vt curve and vS curve) was formed by splitting the joints of each of the elements' individual simulation curves. During this process, the train velocity variance was calculated by time increment method with assistance of polynomial fitting technology. Additionally, a step‐by‐step method with iteration was used to combine each element and makes the whole simulation curve continuous. Meanwhile, the energy‐saving issue was also taken into account to optimize the simulation curve. This article gives more details about the modeling by providing an example of a railway route based on moving block control. The element increment method is a more effective way to calculate train traction of high‐speed railway, and it is an alternative method to train movement simulation for aiding macroscopic railway transportation planning. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
This paper examines pedestrian anatomical injuries and crash characteristics in back‐to‐traffic and facing‐traffic crashes. Pedestrian crashes involving pedestrians walking along streets (i.e. with their backs to traffic or facing traffic) have been overlooked in literature. Although this is not the most frequent type of crash, the crash consequence to pedestrians is a safety concern. Combining Taiwan A1A2 police‐reported accident data and data from the National Health Insurance Database from years 2003–2013, this paper examines anatomical injuries and crash characteristics in back‐to‐traffic and facing‐traffic crashes. There were a total of 830 and 2267 pedestrian casualties in back‐to‐traffic and facing‐traffic crashes respectively. The injuries sustained by pedestrians and crash characteristics of these two crash types were compared with those of other crossing types of crashes (nearside crash, nearside dart‐out crash, offside crash, and offside dart‐out crash). Odds of various injuries to body regions were estimated using logistic regressions. Key findings include that the percentage of fatalities in back‐to‐traffic crashes is the highest; logistic models reveal that pedestrians in back‐to‐traffic crashes sustained more head, neck, and spinal injuries than did pedestrians in other crash types, and unlit darkness and non‐built‐up roadways were associated with an increased risk of pedestrian head injuries. Several crash features (e.g. unlit darkness, overtaking manoeuvres, phone use by pedestrians and drivers, and intoxicated drivers) are more frequently evident in back‐to‐traffic crashes than in other types of crashes. The current research suggests that in terms of crash consequence, facing traffic is safer than back to traffic. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Are Intelligent Transportation Systems (ITS) affecting transportation industry only? ITS are currently perceived as a contribution to transportation industry only; however, by quantitatively analyzing the economic impact of ITS on the state of Michigan, this work attempts to answer the posed question. The quantitative economic analysis is carried out through the well‐established Leontief's Input–Output (I‐O) model. This model is employed to establish ITS effects on each industry by detailing RIMS II I‐O tables for Michigan constructed from the national I‐O tables. Major savings by ITS identified as reduced time delays and fuel cost savings are quantitatively simulated thereby generating an overall cost reduction factor which is incorporated in Michigan I‐O tables to modify their characteristics. ITS impact on each industry in I‐O tables is achieved by maximizing effects on certain selected industries. Impact multipliers that are customary macro‐economic measures for I‐O analysis are then calculated for all the aggregated industries. Multipliers comparison for the three cases namely before ITS implementation, conventional improvement methods, and after ITS implementation is evaluated. These values suggest greater economic benefits that may be achieved by statewide implementation of the ITS. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
We consider inferring transit route‐level origin–destination (OD) flows using large amounts of automatic passenger counter (APC) boarding and alighting data based on a statistical formulation. One critical problem is that we need to enumerate the OD flow matrices that are consistent with the APC data for each bus trip to evaluate the model likelihood function. The OD enumeration problem has not been addressed satisfactorily in the literature. Thus, we propose a novel sampler to avoid the need to enumerate OD flow matrices by generating them recursively from the first alighting stop to the last stop of the bus route of interest. A Markov chain Monte Carlo (MCMC) method that incorporates the proposed sampler is developed to simulate the posterior distributions of the OD flows. Numerical investigations on an operational bus route under a realistic OD structure demonstrate the superiority of the proposed MCMC method over an existing MCMC method and a state‐of‐the‐practice method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
We propose a dynamic linear model (DLM) for the estimation of day‐to‐day time‐varying origin–destination (OD) matrices from link counts. Mean OD flows are assumed to vary over time as a locally constant model. We take into account variability in OD flows, route flows, and link volumes. Given a time series of observed link volumes, sequential Bayesian inference is applied in order to estimate mean OD flows. The conditions under which mean OD flows may be estimated are established, and computational studies on two benchmark transportation networks from the literature are carried out. In both cases, the DLM converged to the unobserved mean OD flows when given sufficient observations of traffic link volumes despite assuming uninformative prior OD matrices. We discuss limitations and extensions of the proposed DLM. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
This paper focuses on computational model development for the probit‐based dynamic stochastic user optimal (P‐DSUO) traffic assignment problem. We first examine a general fixed‐point formulation for the P‐DSUO traffic assignment problem, and subsequently propose a computational model that can find an approximated solution of the interest problem. The computational model includes four components: a strategy to determine a set of the prevailing routes between each origin–destination pair, a method to estimate the covariance of perceived travel time for any two prevailing routes, a cell transmission model‐based traffic performance model to calculate the actual route travel time used by the probit‐based dynamic stochastic network loading procedure, and an iterative solution algorithm solving the customized fixed‐point model. The Ishikawa algorithm is proposed to solve the computational model. A comparison study is carried out to investigate the efficiency and accuracy of the proposed algorithm with the method of successive averages. Two numerical examples are used to assess the computational model and the algorithm proposed. Results show that Ishikawa algorithm has better accuracy for smaller network despite requiring longer computational time. Nevertheless, it could not converge for larger network. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
The Highway Safety Manual (HSM) recommends using the empirical Bayes method with locally derived calibration factors to predict an agency's safety performance. The data needs for deriving these local calibration factors are significant, requiring very detailed roadway characteristics information. Many of these data variables are currently unavailable in most of the agencies' databases. Furthermore, it is not economically feasible to collect and maintain all the HSM data variables. This study aims to prioritize the HSM calibration variables based on their impact on crash predictions. Prioritization would help to identify influential variables for which data could be collected and maintained for continued updates, and thereby reduce intensive data collection efforts. Data were first collected for all the HSM variables from over 2400 miles of urban and suburban arterial road networks in Florida. Using 5 years (2008–2012) of crash data, a random forests data mining approach was then applied to measure the importance of each variable in crash frequency predictions for five different urban and suburban arterial facilities including two‐lane undivided, three‐lane with a two‐way left‐turn lane, four‐lane undivided, four‐lane divided, and five‐lane with a two‐way left‐turn lane. Two heuristic approaches were adopted to prioritize the variables: (i) simple ranking based on individual relative influence of variables; and (ii) clustering based on relative influence of variables within a specific range. Traffic volume was found as the most influential variable. Roadside object density, minor commercial driveway density, and minor residential driveway density variables were the other variables with significant influence on crash predictions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Built upon the previous studies, this paper incorporates both bilateral taxi–customer search frictions and congestion externalities into the economic analyses of the equilibrium properties of taxi markets. We take account of congestion externalities by adopting a realistic distance‐based and delay‐based taxi fare structure. We first investigate comparative static effects of regulatory variables of taxi fare and fleet size on the market and then examine the properties of the Pareto‐efficient solutions for simultaneous maximization of social welfare and taxi profit in the congested market. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号