首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract

Many urban university campuses are considered major trip attractors. Considering the multimodal and complex nature of university campus transportation planning and operation, this paper proposes a dynamic traffic simulation and assignment analysis approach and demonstrates how such a methodology can be successfully applied. Central to the research is the estimation of trip origindestinations and the calibration of a parking lot choice model. Dynamic simulation is utilized to simulate multiple modes of transportation within the transportation network while further assigning these modes with respect to various mode-specific roadway accessibilities. A multiple vehicle-class simulation analysis for planning purposes becomes a critical capability to predict how faculty and staff who once parked within the campus core choose other nearby alternate parking lots. The results highlight the effectiveness of the proposed approach in providing integrated and reliable solutions for challenging questions that face urban university campus planners and local transportation jurisdictions.  相似文献   

2.
Studies on campus parking indicate more severe problems and a wider range of characteristics than commercial parking because of limited parking places, special conditions, specific policies and enclosed space on university campuses. Heterogeneous characteristics are usually ignored in analyses of campus parking behavior. In this paper, a mixed logit model is applied to analyze parking choice behavior on a campus using data collected from a stated-preference survey of Tongji University, Shanghai, China. The heterogeneity of individuals with various sociodemographic characteristics is evaluated by interaction terms and random parameters. Comparison between the proposed approach and the conditional logit model shows that the results of the mixed logit model are more interpretable because they are not limited by the independence from irrelevant alternatives assumption. Key factors that have considerable effects on campus parking choices are identified and analyzed. Important regularities are also concluded from elasticity analyses. Finally, the campus is divided into two areas according to the walking distance to a new parking lot, and the modeling results show that area-specific policies should be established because the two areas have quite distinct parking choice features.  相似文献   

3.
Parking demand is a significant land-use problem in campus planning. The parking policies of universities and large corporations with facilities located in small urban areas shape the character of their campuses. These facilities will benefit from a simplified methodology to study the effects of parking availability on transportation mode mix and impacts on recruitment and staffing policies. This paper, based on a case study of North Dakota State University in the United States, introduces an analytical framework to provide planners with insights about how parking supply and demand affects campus transportation mode choice. The methodology relies only on aggregate mode choice data for the special generator zone and the average aggregate volume/capacity ratio projections for all external routes that access the zone. This reduced data requirement significantly lowers analysis cost and obviates the need for specialized modelling software and spatial network analysis tools. Results illustrate that the framework is effective for analysing mode choice changes under different scenarios of parking supply and population growth.  相似文献   

4.
Operators of parking guidance and information (PGI) systems often have difficulty in determining the best car park availability information to present to drivers in periods of high demand. This paper describes a behavioural model of parking choice incorporating drivers perceptions of waiting times at car parks based on PGI signs. This model was used to predict the influence of PGI signs on the overall performance of the traffic system.Relationships were developed for estimating the arrival rates at car parks based on trip patterns, driver characteristics, car park attributes as well as the car park availability information displayed on PGI signs. Drivers' perceptions of waiting times at car parks were assumed to be influenced by the PGI signs for observers of the signs and actual car park utilisation levels for non-observers. The model assumes that the choice of car park does not change after entering the city centre, even if conditions observed are different from those initially perceived.A mathematical programme was formulated to determine the optimal display PGI sign configuration to minimise queue lengths and vehicle kilometres of travel (VKT). The model was limited to off-street parking choices and illegal parking was not incorporated. A simple genetic algorithm was used to identify solutions that significantly reduced queue lengths and VKT compared with existing practices.These procedures were applied to an existing PGI system operating in Tama New Town near Tokyo. Significant reductions in queue lengths and VKT were predicted using the optimisation model. This would reduce traffic congestion and lead to various environmental benefits.  相似文献   

5.
This article reviews empirical studies of how employer-paid parking affects employees' travel choices. A strong effect is found: parking subsidies greatly increase solo driving. When employers reduce or remove parking subsidies, a significant number of solo drivers shift to carpools and/or transit. This conclusion is based on studies of parking subsidies in a variety of circumstances, including central city and suburban areas, private and public employers, and clerical and professional employees. Three measures are developed to compare changes in commute patterns: changes in the share of solo drivers. changes in the number of autos driven to work per 100 employees, and the parking price elasticity of demand for solo driving. The studies reviewed here show that 19 to 81 percent fewer employees drive to work alone when they pay for their own parking. Because 90 percent of American commuters who drive to work receive employer-paid parking, these findings are significant for designing transportation policies to reduce air pollution, traffic congestion, and energy consumption.  相似文献   

6.
ABSTRACT

This paper explores car drivers’ cruising behaviour and location choice for curb parking in areas with insufficient parking space based on a survey of car drivers in Beijing, China. Preliminary analysis of the data show that car drivers’ cruising behaviour is closely related to their parking duration and parking location. A multinomial probit (MNP) model is used to analyse cruising behaviour and the results show that the closer to the destination car drivers are, the more likely they choose to park on the curb. The adjacent locations are the basis of car drivers’ sequential parking decisions at different locations. The research results provide a better understanding of cruising behaviour for parking and recommendations for reducing cruising for parking. The provision of parking information can help regulate the parking demand distribution.  相似文献   

7.
This paper examines the activity engagement, sequencing and timing of activities for student, faculty and staff commuter groups at the largest university in the Maritime Provinces of Canada. The daily activity patterns of all university community groups are modeled using the classification and regression tree classifier algorithm. The data used for this study are derived from the Environmentally Aware Travel Diary Survey (EnACT) conducted in spring 2016 at Dalhousie University, Nova Scotia. Results show that there are significant differences in activity and travel behavior between university population segments and the general population in the region, and between campus groups. For example, students participate in more recreation activities compared to faculty and staff. They also take more trips to and from campus, and are more flexible in their scheduling of trips. The insights gained from this study will provide helpful information for promoting sustainability across university campuses, and for development of campus-based travel demand management strategies.  相似文献   

8.
An important factor that affects park‐and‐ride demand is transfer time. However, conventional park‐and‐ride demand models treat transfer time as a single value, without considering the time‐of‐day effect. Since early comers usually occupy spots closer to the entrance, their transfer times are shorter. Hence, there is a relationship between arrival time and transfer time. To analyze this relationship, a micro‐simulation model is developed. The model simulates the queuing system at the entrance and the pattern that parking spots are occupied in the parking lot over time. As expected, the model output illustrates an increasing relationship between arrival time and transfer time. This relationship has significant implication in mode choice models because it means that the attractiveness of park‐and‐ride depends on the time of arrival at the park‐and‐ride lot. This model of park‐and‐ride transfer time can potentially improve travel demand forecasting, as well as facilitate the operation and design of park‐and‐ride facilities.  相似文献   

9.
ABSTRACT

The advent of the autonomous vehicle (AV) will affect not only the transportation system, but also future patterns of land development. Integrated land use and transportation models will be critical tools in assessing the path forward with this technology. Key questions with respect to land use impacts of AVs arise from potential changes in sensitivity to travel and reduced demand for parking. It is an open question whether AVs will induce urban sprawl, or whether spatial economies of agglomeration will mitigate any reductions in travel time sensitivity. The deployment of shared fleets of AVs would likely reduce parking demand, producing yet to be explored impacts on property development within existing urban footprints. We perform a critical assessment of currently operational models and their ability to represent the adoption of AVs. We identify the representation of time in such models as a vital component requiring additional development to model this new technology. Existing model applications have focused on the discrete addition of new infrastructure or policy at a fixed point in time, whereas AV adoption will occur incrementally through time. Stated adaptation surveys are recommended as tools to quantify preferences and develop relevant model inputs. It is argued that existing models that assume comparatively static equilibrium have been convenient in the past, but are insufficient to model technology adoption. In contrast, dynamic model frameworks lack sufficient structure to maintain reasonability under large perturbations from base conditions. The ongoing advancement of computing has allowed models to move away from being mechanistic aggregate tools, towards behaviourally rich depictions of individual persons and firms. However, much work remains to move from projections of existing conditions into the future, to the evolution of the spatial economy as it evolves through time in response to new technologies and exogenous stresses. Principles from complex and evolutionary systems theory will be important in the development of models with the capacity to consider such dynamics.  相似文献   

10.
《运输评论》2012,32(1):54-75
ABSTRACT

The organisation of parking is a key challenge to more sustainable mobility in urban areas, as its pricing and availability affect the rates of private car ownership and use. However, changing parking policies is a challenging issue for local politicians and planners because residents frequently oppose changes or restrictions to conditions they have taken for granted such as on-street parking in a public space. The aim of this paper is firstly to assess how the parking policy of an urban neighbourhood can be structured to contribute to more sustainable mobility and to increase liveability in the neighbourhood. The second aim is to apply the policies reviewed to an example neighbourhood. For this purpose, we systematically reviewed academic literature and identified five types of relevant parking policies: (i) maximum parking requirements, (ii) physical detachment of residence and parking space, (iii) residential parking permits and the limitation of available parking space, (iv) performance-based pricing and (v) parking as a demand management strategy. We discovered that most research focuses on econometric models about parking and that studies rarely address the effects of parking on the quality of life in neighbourhoods. Therefore, we need further research regarding the relationship of parking and liveability. We conclude that for the implementation of such parking policies in an example neighbourhood, the municipality needs to develop a mobility vision for its city. It has to understand parking as a tool for transportation demand management to increase the acceptance of parking policy concepts and to avoid spillover problems. Finally, in the German case, as in most other countries, states and municipalities need to redesign their legal frameworks to be able to manage parking supply better and to react to changes related to digital developments and parking. The findings have implications for other European neighbourhoods regarding the transfer from research to local circumstances and applications for the whole city.  相似文献   

11.
This paper explores how advanced reservations, coupled with dynamic pricing (based on booking limits) can be used to maximize parking revenue. An integer programing formulation that maximizes parking revenue over a system of garages is presented. Furthermore, an intelligent parking reservation model is developed that uses an artificial neural network procedure for online reservation decision-making. Finally, the paper provides some strategic and managerial implications of multi-garage revenue management systems, and discusses techniques for identifying and implementing micro-market segmentation in the parking industry.  相似文献   

12.
This paper presents an integrated transit-oriented travel demand modeling procedure within the framework of geographic information systems (GIS). Focusing on transit network development, this paper presents both the procedure and algorithm for automatically generating both link and line data for transit demand modeling from the conventional street network data using spatial analysis and dynamic segmentation. For this purpose, transit stop digitizing, topology and route system building, and the conversion of route and stop data into link and line data sets are performed. Using spatial analysis, such as the functionality to search arcs nearest from a given node, the nearest stops are identified along the associated links of the transit line, while the topological relation between links and line data sets can also be computed using dynamic segmentation. The advantage of this approach is that street map databases represented by a centerline can be directly used along with the existing legacy urban transportation planning systems (UTPS) type travel modeling packages and existing GIS without incurring the additional cost of purchasing a full-blown transportation GIS package. A small test network is adopted to demonstrate the process and the results. The authors anticipate that the procedure set forth in this paper will be useful to many cities and regional transit agencies in their transit demand modeling process within the integrated GIS-based computing environment.  相似文献   

13.
Parking surveys provide quantitative data describing the spatial and temporal utilization of parking spaces within an area of interest. These surveys are important tools for parking supply management and infrastructure planning. Parking studies have typically been performed by tabulating observations by hand, limiting temporal resolution due to high labor cost. This paper investigates the possibility of automating the data gathering and information extraction in a proof of concept study using a two-dimensional scanning Light Detection and Ranging (LIDAR) sensor mounted on a vehicle, though the work is compatible with other ranging sensors, e.g., stereo vision. This study examines parallel parking in the opposing direction of travel. The ranging measurements are processed to estimate the location of the curb and the presence of objects in the road. Occlusion and location reasoning are then applied to determine which of the objects are vehicles, and whether a given vehicle is parked or is in the traffic-stream. The occupancy of the parking area, vehicle size, and vehicle-to-vehicle gaps are then measured. The algorithm was applied to an area with unmarked, on-street parking near a large university campus. Vehicle counts from 29 trips over 4 years were compared against concurrent ground truth with favorable results. The approach can also be applied to monitor parking in the direction of travel, eliminating the possibility of occlusions and simplifying the processing.  相似文献   

14.
Abstract

In this paper a route-based dynamic deterministic user equilibrium assignment model is presented. Some features of the linear travel time model are first investigated and then a divided linear travel time model is proposed for the estimation of link travel time: it addresses the limitations of the linear travel time model. For the application of the proposed model to general transportation networks, this paper provides thorough investigations on the computational issues in dynamic traffic assignment with many-to-many OD pairs and presents an efficient solution procedure. The numerical calculations demonstrate that the proposed model and solution algorithm produce satisfactory solutions for a network of substantial size with many-to-many OD pairs. Comparisons of assignment results are also made to show the impacts of incorporation of different link travel time models on the assignment results.  相似文献   

15.
Cruising-for-parking constraints mobility in urban networks. Car-users may have to cruise for on-street parking before reaching their destinations. The accessibility and the cost of parking significantly influence people's travel behavior (such as mode choice, or parking facility choice between on-street and garage). The cruising flow causes delays eventually to everyone, even users with destinations outside limited parking areas. It is therefore important to understand the impact of parking limitation on mobility, and to identify efficient parking policies for travel cost reduction. Most existing studies on parking fall short in reproducing the dynamic spatiotemporal features of traffic congestion in general, lack the treatment of dynamics of the cruising-for-parking phenomenon, or require detailed input data that are typically costly and difficult to collect. In this paper, we propose an aggregated and dynamic approach for modeling multimodal traffic with the treatment on parking, and utilize the approach to design dynamic parking pricing strategies. The proposed approach is based on the Macroscopic Fundamental Diagram (MFD), which can capture congestion dynamics at network-level for single-mode and bi-modal (car and bus) systems. A parsimonious parking model is integrated into the MFD-based multimodal modeling framework, where the dynamics of vehicular and passenger flows are considered with a change in the aggregated behavior (e.g. mode choice and parking facility choice) caused by cruising and congestion. Pricing strategies are developed with the objective of reducing congestion, as well as lowering the total travel cost of all users. A case study is carried out for a bi-modal city network with a congested downtown region. An elegant feedback dynamic parking pricing strategy can effectively reduce travel delay of cruising and the generic congestion. Remarkably, such strategy, which is applicable in real-time management with limited available data, is fairly as efficient as a dynamic pricing scheme obtained from system optimum conditions and a global optimization with full information about the future states of the system. Stackelberg equilibrium is also investigated in a competitive behavior between different parking facility operators. Policy indications on on-street storage capacity management and pricing are provided.  相似文献   

16.
This study develops a four-step travel demand model for estimating traffic volumes for low-volume roads in Wyoming. The study utilizes urban travel behavior parameters and processes modified to reflect the rural and low-volume nature of Wyoming local roads. The methodology disaggregates readily available census block data to create transportation analysis zones adequate for estimating traffic on low-volume rural roads. After building an initial model, the predicted and actual traffic volumes are compared to develop a calibration factor for adjusting trip rates. The adjusted model is verified by comparing estimated and actual traffic volumes for 100 roads. The R-square value from fitting predicted to actual traffic volumes is determined to be 74% whereas the Percent Root Mean Square Error is found to be 50.3%. The prediction accuracy for the four-step travel demand model is found to be better than a regression model developed in a previous study.  相似文献   

17.
The time spent searching for free parking spaces can produce considerable environmental pollution. Information on parking availability can be a powerful instrument for reducing these search costs. This paper develops a demand assignment model to evaluate the benefits of manipulating information with the objective of reducing the time and distances involved in finding a parking-place; including the walking distances involved. Using the full search procedure it was found that improvements of some 10% in efficiency could be achieved, but only at high computational costs. A genetic algorithm was programmed that increases the possibility of finding the optimum information conditions that can be translated into lower emissions of toxic greenhouse gases.  相似文献   

18.
In studies of parking policy, the role of parking pricing has been addressed. Most researches have focused on the determination of a proper price for city parking spaces that are open to the public and it is now evident that price is used by authorities as a tool to manage transport demand. However, studies of parking pricing that pertain to privately-owned parking resources are few and in particular, the problem of setting a proper price for physical market parking has rarely been studied, such as a mall’s ‘dual-pricing portfolio’ decision for the simultaneous determination of a parking fee and the consumer spending required for free parking (i.e., the ‘threshold’). This is a common problem for most malls, but the different agents involved (e.g., the visitors, the mall, the marketplace and the parking lot departments) usually have diverse goals, so the decision must take account of a multiplicity of criteria and subtle relationships. In order to systematically support this type of inter-departmental decision process, a decision model that includes an analytical decision-aid process and the relevant programming models is established. A numerical example verifies the proposed model by taking the data for a mall in Taiwan and the implications, in terms of management, are given. This systematic computational model can be generalized to any type of commercial market that requires a (new) parking pricing policy.  相似文献   

19.
Despite rapid advances of information technologies for intelligent parking systems, it remains a challenge to optimally manage limited parking resources in busy urban neighborhoods. In this paper, we use dynamic location-dependent parking pricing and reservation to improve system-wide performance of an intelligent parking system. With this system, the parking agency is able to decide the spatial and temporal distribution of parking prices to achieve a variety of objectives, while drivers with different origins and destinations compete for limited parking spaces via online reservation. We develop a multi-period non-cooperative bi-level model to capture the complex interactions among the parking agency and multiple drivers, as well as a non-myopic approximate dynamic programming (ADP) approach to solve the model. It is shown with numerical examples that the ADP-based pricing policy consistently outperforms alternative policies in achieving greater performance of the parking system, and shows reliability in handling the spatial and temporal variations in parking demand.  相似文献   

20.
In this paper, we present an approach for determining dynamic user equilibria. The method is suitable for disaggregated microscopic and mesoscopic simulation-based models. It is a modification of the convex-simplex method, which disposes with the line search step, and controls the subset of travelers to be re-routed at each step while updating the link travel times after each assignment. To guarantee finite termination, a suitable stopping criterion is adopted. The proposed method is implemented within TRANSIMS, the Transportation Analysis and Simulation System, as a two-stage process that employs a combined use of link performance functions and a microsimulator in order to design a framework suitable for application to real transportation systems. To demonstrate this capability, we apply the developed methodology to a large-scale network, Bignet, which is part of the transportation city network of Portland, Oregon; and a medium-scale network, Blacksburg, Virginia; and provide some comparative analyses. Our results exhibit that an improved distribution of travelers is obtained while consuming less than 17–33% of the effort required by the current version of TRANSIMS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号