首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目前我国高速铁路的日间行车能力已得到了较为充分的利用,而如何组织好高铁夜间垂直天窗与夜行列车之间的耦合关系、用好高铁夜间能力,是适应多样化市场需求的需要,也是进一步提升高铁经营效益的有效途径。对此,本文提出了动卧列车和货运动车组两种相对可行的高铁夜间运输产品,分别对其产品特征进行了分析,充分考虑高铁夜间天窗制约下两种列车的开行模式,基于市场需求提出了列车开行策略,并在充分对比两种产品的经济效益、客(货)源组织、能力分配等因素的基础上,给出了高铁夜间能力发展建议。  相似文献   

2.
The train standing-time at a station is a determinant of the line capacity and the necessary fleet-size. Its determination is usually based on the assumption that boarding and alighting is uniform at all doors of a train. Uniform boarding and alighting is conceivable if passengers distribute themselves uniformly on station platforms while waiting for trains. The validity of the uniformity assumptions is tested using data from two stations (one CBD, one suburban) of the Calgary, Alberta LRT system. It is shown that passenger distribution on the platform, alighting and boarding is not uniform and is closely related to the location of platform access points. Some strategies that will encourage uniformity are discussed. However, procedures that can estimate the standing time for non-uniform boarding and alighting need to be developed.  相似文献   

3.
If railway companies ask for station capacity numbers, their underlying question is in fact one about the platformability of extra trains. Train platformability depends not only on the infrastructure, buffer times, and the desired departure and arrival times of the trains, but also on route durations, which depend on train speeds and lengths, as well as on conflicts between routes at any given time. We consider all these factors in this paper. We assume a current train set and a future one, where the second is based on the expected traffic increase through the station considered. The platforming problem is about assigning a platform to each train, together with suitable in- and out-routes. Route choices lead to different route durations and imply different in-route-begin and out-route-end times. Our module platforms the maximum possible weighted sum of trains in the current and future train set. The resulting number of trains can be seen as the realistic capacity consumption of the schedule. Our goal function allows for current trains to be preferably allocated to their current platforms.Our module is able to deal with real stations and train sets in a few seconds and has been fully integrated by Infrabel, the Belgian Infrastructure Management Company, in their application called Ocapi, which is now used to platform existing and projected train sets and to determine the capacity consumption.  相似文献   

4.
Determining the required capacity upgrades to accommodate future demand is a critical process in assisting public and private financing of capacity investments. Conventional railway systems usually operate multiple types of trains on the same track. These different types of trains can exert substantially different capacity impact, and can cause serious operational conflicts. In the past, rail line capacity is commonly defined as the maximum number of trains that can be operated on a section of track within a given time period. However, a specific unit (trains/hr or trains/day) does not reflect the heterogeneity of train types. According to the concept of base train equivalents (BTE) and base train unit (BTU), this study developed headway-based models to determine BTE for transforming different train types into a standard unit (i.e., BTU). An approximate method for lines with three and more types of trains was also proposed to compute BTEs for non-base trains. Results from the case studies demonstrate that this method enables the standardization of rail capacity unit, facilitates assessment of the impact from heterogeneous trains, and allows comparison and evaluation of the capacity measurements from different lines and systems.  相似文献   

5.
We address the problem of simultaneously scheduling trains and planning preventive maintenance time slots (PMTSs) on a general railway network. Based on network cumulative flow variables, a novel integrated mixed-integer linear programming (MILP) model is proposed to simultaneously optimize train routes, orders and passing times at each station, as well as work-time of preventive maintenance tasks (PMTSs). In order to provide an easy decomposition mechanism, the limited capacity of complex tracks is modelled as side constraints and a PMTS is modelled as a virtual train. A Lagrangian relaxation solution framework is proposed, in which the difficult track capacity constraints are relaxed, to decompose the original complex integrated train scheduling and PMTSs planning problem into a sequence of single train-based sub-problems. For each sub-problem, a standard label correcting algorithm is employed for finding the time-dependent least cost path on a time-space network. The resulting dual solutions can be transformed to feasible solutions through priority rules. Numerical experiments are conducted on a small artificial network and a real-world network adapted from a Chinese railway network, to evaluate the effectiveness and computational efficiency of the integrated optimization model and the proposed Lagrangian relaxation solution framework. The benefits of simultaneously scheduling trains and planning PMTSs are demonstrated, compared with a commonly-used sequential scheduling method.  相似文献   

6.
A key factor in determining the performance of a railway system is the speed profile of the trains within the network. There can be significant variation in this speed profile for identical trains on identical routes, depending on how the train is driven. A better understanding and control of speed profiles can therefore offer significant potential for improvements in the performance of railway systems. This paper develops a model to allow the variability of real-life driving profiles of railway vehicles to be quantitatively described and predicted, in order to better account for the effects on the speed profile of the train and hence the performance of the railway network as a whole. The model is validated against data from the Tyne and Wear Metro, and replicates the measured data to a good degree of accuracy.  相似文献   

7.
In the US, freight railways are one of the major means to transport goods from ports to inland destinations. According to the Association of American Railroad’s study, rail companies move more than 40% of the nation’s total freight. Given the fact that the freight railway industry is already running without much excess capacity, better planning and scheduling tools are needed to effectively manage the scarce resources, in order to cope with the rapidly increasing demand for railway transportation. This research develops optimization-based approaches for scheduling of freight trains. Two mathematical formulations of the scheduling problem are first introduced. One assumes the path of each train, which is the track segments each train uses, is given and the other one relaxes this assumption. Several heuristics based on mixtures of the two formulations are proposed. The proposed algorithms are able to outperform two existing heuristics, namely a simple look-ahead greedy heuristic and a global neighborhood search algorithm, in terms of railway total train delay. For large networks, two algorithms based on the idea of decomposition are developed and are shown to significantly outperform two existing algorithms.  相似文献   

8.
Ferreira  Luis 《Transportation》1997,24(2):183-200
As privatisation of railway systems reach the political agendas in a number of countries, the separation of track infrastructure from train operations is seen as providing the vehicle which will improve profitability within the rail industry. This paper deals with three main issues related to such separation within a freight railway focus, namely: investment appraisal; track standards and maintenance; and train operating performance. The conflicts of interest between the owners of track and their client operators are discussed in detail. Costs related to track capacity and congestion need to be taken into account, given that additional trains are likely to lead to increased risk of delays to existing services. The paper discusses the use of a travel time reliability model to estimate the additional costs imposed on the system through the introduction of specific train services.It is concluded that investment in individual elements of railway infrastructure must be integrated with the overall financial and customer service strategies of both operators and owners. As an alternative to current practices, a hybrid model of track ownership is put forward here. Under such a model, a joint-venture company with equity from the main ÒplayersÓ would be owner of track. This would allow some of the benefits of vertical integration to be retained, whilst providing fair access to new operators.  相似文献   

9.
This paper makes two contributions. It firstly proposes the use of a fault tolerance approach for railway operations and secondly it develops a minimum time gap matrix model for capacity computation and the study of perturbation effects through the generation of a compressed timetable. A fault tolerance approach is proposed to improve the operational efficiency of the railway network in terms of the network capacity and the robustness of train timetables. The term fault tolerance is used in a broad sense, to represent any abnormalities or unexpected events in operations or equipment. Enhanced fault tolerance capability provides safety assurance so that, in normal operating conditions, trains can adopt much faster speed profiles when approaching a ‘to-be-cleared’ signal block at stations and junctions than those currently permitted, effectively turning the status of ‘be ready to stop’ to that of ‘proceed with caution’. In the rare event of a ‘fault’ in the system, e.g. if a conflicting train fails to move out of a signalling block as expected or a switch fails to operate as required, the train would be re-routed to take an alternative path. In this study, the new approach is developed on three scenarios i.e., a standard classic right turn junction, a terminus station, and a small network combining both of these elements to demonstrate the performance gains, but the concept can be readily extended for other types of junctions/stations. Results so far show great potential in the proposed fault tolerance approach to increase the capacity and enhance operational robustness to perturbations at such locations. A novel method for capacity computation called minimum time gap matrix model is also introduced that has capability to produce compressed timetables directly from a given train sequence.  相似文献   

10.
When looking at railway planning, a discrepancy exists between planners who focus on the train operations and publish fixed railway schedules, and passengers who look not only at the schedules but also at the entirety of their trip, from access to waiting to on-board travel and egress. Looking into this discrepancy is essential, as assessing railway performances by merely measuring train punctuality would provide an unfair picture of the level of service experienced by passengers. Firstly, passengers’ delays are often significantly larger than the train delays responsible for the passengers to be late. Secondly, trains’ punctuality is often strictly related to too tight schedules that in turn might translate into knock-on delays for longer dwelling times at stations, trip delays for increased risk of missing transfer connections, and uncertain assessment of the level of service experienced, especially with fluctuating passenger demand. A key aspect is the robustness of railway timetables. Empirical evidence indicates that passengers give more importance to travel time certainty than travel time reductions, as passengers associate an inherent disutility with travel time uncertainty. This disutility may be broadly interpreted as an anxiety cost for the need for having contingency plans in case of disruptions, and may be looked at as the motivator for the need for delay-robust railway timetables. Interestingly, passenger-oriented optimisation studies considering robustness in railway planning typically limit their emphasis on passengers to the consideration of transfer maintenance. Clearly, passengers’ travel behaviour is far more complex and multi-faceted and thus several other aspects should be considered, as becoming more and more evident from passenger surveys. The current literature review starts by looking at the parameters that railway optimisation/planning studies are focused on and the key performance indicators that impact railway planning. The attention then turns to the parameters influencing passengers’ perceptions and travel experiences. Finally, the review proposes guidelines on how to reduce the gap between the operators’ railway planning and performance measurement on the one hand and the passengers’ perception of the railway performance on the other hand. Thereby, the conclusions create a foundation for a more passenger-oriented railway timetabling ensuring that passengers are provided with the best service possible with the resources available.  相似文献   

11.
This paper investigates the coordinated cruise control strategy for multiple high-speed trains’ movement. The motion of an ordered set of high-speed trains running on a railway line is modeled by a multi-agent system, in which each train communicates with its neighboring trains to adjust its speed. By using the potential fields and LaSalles invariance principle, we design a new coordinated cruise control strategy for each train based on the neighboring trains’ information, under which each train can track the desired speed, and the headway distances between any two neighboring trains are stabilized in a safety range. Numerical examples are given to illustrate the effectiveness of the proposed methods.  相似文献   

12.
In this paper, we develop a new framework for strategic planning purposes to calculate railway infrastructure occupation and capacity consumption in networks, independent of a timetable. Furthermore, a model implementing the framework is presented. In this model different train sequences are generated and assessed to obtain timetable independence. A stochastic simulation of delays is used to obtain the capacity consumption. The model is tested on a case network where four different infrastructure scenarios are considered. Both infrastructure occupation and capacity consumption results are obtained efficiently with little input. The case illustrates the model’s ability to quantify the capacity gain from infrastructure scenario to infrastructure scenario which can be used to increase the number of trains or improve the robustness of the system.  相似文献   

13.
This paper examines some key aspects of a charging system for promoting railway transport, including charges reflecting a clear relationship with costs (transparency) and charges reflecting the quality of the infrastructure manager's service. Train running charges recover track-related costs and can help to develop a charging system that meets these requirements. To orient train running charges to the market, a method for processing track maintenance and renewal costs is proposed whereby the quality of the service provided by an infrastructure is measured according to its utility to the railway undertaking. To achieve transparency, a single indicator is used for cost planning and the subsequent levying of costs on railway undertakings. The paper includes an example of how proposed train running charges would be calculated according to data from 14 European countries. The example shows that short-distance trains generate the lowest maintenance and renewal costs, followed by long-distance trains and freight trains.  相似文献   

14.
Increasing attention is being paid to airborne particles in railway environments because of their potential to adversely affect health. In this study, we investigate the contribution of moving trains to both the concentration and size distribution of particles in tunnel environments. Real-time measurements were taken with high time-resolution instruments at a railway station platform in a tunnel in Stockholm in January 2013. The results show that individual trains stopping and starting at the platform substantially elevate the particulate concentrations with a mobility diameter greater than 100 nm. Two size modes of the particulate number concentrations were obtained. A mode of around 170 nm occurs when a train moves, while the other mode peaks at about 30 nm when there is no train in the station. By using principal component analysis (PCA), three contributing sources were identified on the basis of the classification of the sizes of the particles, namely railway-related mechanical wear, suspension due to the movement of trains and sparking of electric-powered components. It is concluded that the particulate matter released by individual moving trains is a key contributor to fine particles (100–500 nm) on the railway platform in a tunnel.  相似文献   

15.
In case of railway disruptions, traffic controllers are responsible for dealing with disrupted traffic and reduce the negative impact for the rest of the network. In case of a complete blockage when no train can use an entire track, a common practice is to short-turn trains. Trains approaching the blockage cannot proceed according to their original plans and have to short-turn at a station close to the disruption on both sides. This paper presents a Mixed Integer Linear Program that computes the optimal station and times for short-turning the affected train services during the three phases of a disruption. The proposed solution approach takes into account the interaction of the traffic between both sides of the blockage before and after the disruption. The model is applied to a busy corridor of the Dutch railway network. The computation time meets the real-time solution requirement. The case study gives insight into the importance of the disruption period in computing the optimal solution. It is concluded that different optimal short-turning solutions may exist depending on the start time of the disruption and the disruption length. For periodic timetables, the optimal short-turning choices repeat due to the periodicity of the timetable. In addition, it is observed that a minor extension of the disruption length may result in less delay propagation at the cost of more cancellations.  相似文献   

16.
Train dispatching is vital for the punctuality of train services, which is critical for a train operating company (TOC) to maintain its competitiveness. Due to the introduction of competition in the railway transport market, the issue of discrimination is attracting more and more attention. This paper focuses on delivering non-discriminatory train dispatching solutions while multiple TOCs are competing in a rail transport market, and investigating impacting factors of the inequity of train dispatching solutions. A mixed integer linear programming (MILP) model is first proposed, in which the inequity of competitors (i.e., trains and TOCs) is formalized by a set of constraints. In order to provide a more flexible framework, a model is further reformulated where the inequity of competitors is formalized as the maximum individual deviation of competitors’ delay cost from average delay cost in the objective function. Complex infrastructure capacity constraints are considered and modelled through a big M-based approach. The proposed models are solved by a standard MILP solver. A set of comprehensive experiments is conducted on a real-world dataset adapted from the Dutch railway network to test the efficiency, effectiveness, and applicability of the proposed models, as well as determine the trade-off between train delays and delay equity.  相似文献   

17.
Train dwell time is one of the most unpredictable components of railway operations, mainly because of the varying volumes of alighting and boarding passengers. However, for reliable estimations of train running times and route conflicts on main lines, it is necessary to obtain accurate estimations of dwell times at the intermediate stops on the main line, the so‐called short stops. This is a great challenge for a more reliable, efficient and robust train operation. Previous research has shown that the dwell time is highly dependent on the number of boarding and alighting passengers. However, these numbers are usually not available in real time. This paper discusses the possibility of a dwell time estimation model at short stops without passenger demand information by means of a statistical analysis of track occupation data from the Netherlands. The analysis showed that the dwell times are best estimated for peak and off‐peak hours separately. The peak‐hour dwell times are estimated using a linear regression model of train length, dwell times at previous stops and dwell times of the preceding trains. The off‐peak‐hour dwell times are estimated using a non‐parametric regression model, in particular, the k‐nearest neighbor model. There are two major advantages of the proposed estimation models. First, the models do not need passenger flow data, which is usually impossible to obtain in real time in practice. Second, detailed parameters of rolling stock configuration and platform layout are not required, which makes the model more generic and eases implementation. A case study at Dutch railway stations shows that the estimation accuracy is 85.8%–88.5% during peak hours and 80.1% during off‐peak hours, which is relatively high. We conclude that the estimation of dwell times at short stop stations without passenger data is possible. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Level 3 of the ERTMS/ETCS improves the capacity of railways by replacing fixed-block signalling, which prevents a train to enter a block occupied by another train, with moving block signalling, which allows a train to proceed as long as it receives radio messages ensuring that the track ahead is clear of other trains. If messages are lost, a train must stop for safety reasons within a given deadline, even though the track ahead is clear, making the availability of the communication link crucial for successful operation.We combine analytic evaluation of failures due to burst noise and connection losses with numerical solution of a non-Markovian model representing also failures due to handovers between radio stations. In so doing, we show that handovers experienced by a pair of chasing trains periodically affect the availability of the radio link, making behavior of the overall communication system recurrent over the hyper-period of periodic message releases and periodic arrivals at cell borders. As a notable aspect, non-Markovian transient analysis within two hyper-periods is sufficient to derive an upper bound on the first-passage time distribution to an emergency brake, permitting to achieve a trade-off between railway throughput and stop probability. A sensitivity analysis is performed with respect to train speed and headway distance, permitting to gain insight into the consequences of system-level design choices.  相似文献   

19.
Although people are often encouraged to use public transportation, the riding experience is not always comfortable. This study uses service items to measure passenger anxieties by applying a conceptual model based on the railway passenger service chain perspective. Passenger anxieties associated with train travel are measured using a modern psychometric method, the Rasch model. This study surveys 412 train passengers. Analytical results indicate that the following service items cause passenger anxiety during trains travel: crowding, delays, accessibility to a railway station, searching for the right train on a platform, and transferring trains. Empirical results obtained using the Rasch approach can be used to derive an effective strategy to reduce train passenger anxiety. This empirical study also demonstrates that anxiety differs based on passenger sex, age, riding frequency, and trip type. This information will also prove useful for transportation planners and policy-makers when considering the special travel needs of certain groups to create a user-friendly railway travel environment that promotes public use.  相似文献   

20.
The most natural and popular dispatching rule for double-track segments is to dedicate one track for trains traveling in one direction. However, sometimes passenger trains have to share some portions of the railway with freight trains and passenger trains are traveling faster and faster nowadays. The major drawback of this dedicated rule is that a fast train can be caught behind a slow train and experience significant knock-on delay. In this paper, we propose a switchable dispatching policy for a double-track segment. The new dispatching rule enables the fast train to pass the slow train by using the track traveled by trains in the opposite direction if the track is empty. We use queueing theory techniques to derive the delay functions of this policy. The numerical experiments show that a switchable policy can reduce the fast train knock-on delay by as high as 30% compared to a dedicated policy. When there are crossovers at the middle of the double-track segment, our proposed switchable policy can reduce the delay of the fast trains by as high as 65%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号