共查询到20条相似文献,搜索用时 15 毫秒
1.
Feeder lines are one of the most often used types of flexible transit services connecting a service area to a major transit network through a transfer point. They often switch operations between a demand responsive and a fixed-route policy. In designing and running such systems, the identification of the condition justifying the operating switch is often hard to properly evaluate. In this paper, we propose an analytical model and solution of the problem to assist decision makers and operators in their choice. By employing continuous approximations, we derive handy but powerful closed-form expressions to estimate the critical demand densities, representing the switching point between the competing operating policies. Based on the results of one-vehicle and two-vehicle operations for various scenarios, in comparison to values generated from simulation, we verify the validity of our analytical modeling approach. 相似文献
2.
To improve the accessibility of transit system in urban areas, this paper presents a flexible feeder transit routing model that can serve irregular‐shaped networks. By integrating the cost efficiency of fixed‐route transit system and the flexibility of demand responsive transit system, the proposed model is capable of letting operating feeder busses temporarily deviate from their current route so as to serve the reported demand locations. With an objective of minimizing total bus travel time, a new operational mode is then proposed to allow busses to serve passengers on both street sides. In addition, when multiple feeder busses are operating in the target service area, the proposed model can provide an optimal plan to locate the nearest one to response to the demands. A three‐stage solution algorithm is also developed to yield meta‐optimal solutions to the problem in a reasonable amount of time by transforming the problem into a traveling salesman problem. Numerical studies have demonstrated the effectiveness of the proposed model as well as the heuristic solution approach. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
3.
Avishai Ceder 《先进运输杂志》2013,47(6):595-618
The idea of designing an integrated smart feeder/shuttle service stemmed from the need to overcome the problem of using an excessive number of cars arriving and parking at a train station within the same time span. This problem results in high parking demand around the train station. Moreover, some potential train riders will, instead, use their cars and hence become a party to increasing the traffic congestion. This work develops a new idea of an integrated and innovative feeder/shuttle system with new operating and routing concepts. The fulfilled objectives are as follows: (i) to construct and examine different operating strategies from both the user and operator perspectives; (ii) to examine different routing models and scenarios; and (iii) to construct a simulation tool for (i) and (ii). Ten different routing strategies are examined, with all the combinations of fixed/flexible routes, fixed/flexible schedules, a unidirectional or bidirectional concept, and shortcut (shortest path) and/or short‐turn (turnaround) concepts. These strategies are investigated by employing a simulation model specifically developed and constructed for this purpose. This simulation model is used in a case study of Castro Valley in California in which the feeder/shuttle service is coordinated with the Bay Area Rapid Transit service, and the 10 routing strategies are compared in regard to four fleet‐size scenarios. One of the interesting results found is that the fixed‐route and flexible‐route concepts are comparable in performance measures when applying a combination of operating strategies. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
4.
Developing demand responsive transit systems are important with regard to meeting the travel needs for elderly people. Although Dial‐a‐ride Problems (DARP) have been discussed for several decades, most researchers have worked to develop algorithms with low computational cost under the minimal total travel costs, and fewer studies have considered how changes in travel time might affect the vehicle routes and service sequences. Ignoring such variations in travel time when design vehicle routes and schedules might lead to the production of inefficient vehicle routes, as well as incorrect actual vehicle arrival times at the related nodes. The purpose of this paper is to construct a DARP formulation with consideration of time‐dependent travel times and utilizes the traffic simulation software, DynaTAIWAN, to simulate the real traffic conditions in order to obtain the time‐dependent travel time matrices. The branch‐and‐price approach is introduced for the time‐dependent DARP and tested by examining the sub‐network of Kaohsiung City, Taiwan. The numerical results reveal that the length of the time window can significantly affect the vehicle routes and quantitative measurements. As the length of the time window increases, the objective value and the number of vehicles will reduce significantly. However, the CPU time, the average pickup delay time, the average delivery delay time and the average actual ride time (ART)/direct ride time (DRT) will increase significantly as the length of the time window increases. Designing the vehicle routes to reduce operating costs and satisfy the requirements of customers is a difficult task, and a trade‐off must be made between these goals. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
5.
Hongtai Yang Christopher R. Cherry Russell Zaretzki Megan S. Ryerson Xiaobo Liu Zhijian Fu 《先进运输杂志》2016,50(8):1770-1784
Deviated fixed route transit (DFRT) service connecting rural and urban areas is a growing transportation mode in the USA. Little research has been done to develop frameworks for route design. A methodology to explore the most cost‐effective DFRT route is presented in this paper. The inputs include potential DFRT demand distribution and a road network. A heuristic is used to build possible routes by starting at urban cores and extending in all network directions in certain length increments. All the DFRT routes falling in the length range desired by the users are selected. The cost effectiveness of those routes, defined by operating cost per passenger trip, is compared. The most cost‐effective route is selected and presented in a GIS map. A case study illustrates the methodology in several Tennessee metropolitan regions. The most cost‐effective route length is case specific; some routes (e.g. those out of our Nashville case) are most cost effective when short, while others (e.g. those out of Memphis) are most cost effective when long. Government agencies could use the method to identify routes with the lowest operating cost per passenger given a route length or an operating cost budget. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
6.
Intercity bus (ICB), deviated fixed route transit (DFRT) and demand responsive transit (DRT) are three major modes of rural public transportation. This paper focuses on the characteristics and motivations of DFRT and DRT riders, compared to non-riders, in Tennessee. A rural DFRT rider survey, a rural DRT rider survey and a rural (non-rider) resident survey were performed. It is found that DFRT and DRT riders have similar demographics to ICB riders. The most common trip purpose for DFRT and DRT passengers is medical care, which is different from ICB trips. Ninety percent of the riders have difficulty finding alternative transportation modes, suggesting they are captive riders, not choice riders. Regression results indicate that people choosing transit modes tend to have lower personal and household income, own fewer cars, to not be homeowners, and be of non-white race. Rural residents who receive more education are more likely to be open-minded to use rural transit. 相似文献
7.
This paper explores how the selection of public transit modes can be optimized over a planning horizon. This conceptual analysis sacrifices geographic detail in order to better highlight the relations among important factors. First, a set of static models is proposed to identify which type of service, e.g., bus only, rail only, or bus and rail, is the most cost-effective in terms of the average trip cost for given demand. After analyzing essential factors in a long-term planning process, e.g., economies of scale in rail extension and future cost discounting, a dynamic model incorporating such considerations is formulated to optimize the decision over a planning horizon. While analytical solutions can be obtained for some decision variables, the final model is solved with a graphical method by exploring the tradeoffs between the initial and recurring costs. Major findings from this study include: (a) there exists a minimum economic length for a rail line, which can be determined numerically; (b) economies of scale favor large extensions and excess supplied capacity; (c) the rail-only service is largely dominated by the feeder-trunk service, even in the long run. 相似文献
8.
ABSTRACTThis paper develops cost models for urban transport infrastructure options in situations where motorcycles and various forms of taxis are important modes of transport. The total social costs (TSCs) of conventional bus, Bus Rapid Transit (BRT), Monorail, Metro (Elevated Rail), car, motorcycle, Taxi and Uber are calculated for an urban corridor covering operator, user and external costs. Based on the parameters for a 7?km corridor in Hanoi, Vietnam, the results show the lowest average social cost (ASC) transport modes for different ranges of demand. Motorcycle might be the best option at low demand levels while conventional bus has advantages with low-medium demand. At medium demand levels, bus-based technologies and Monorail are competitive options while Metro, with a higher person capacity, is the best alternative at the highest demand levels. Compared to other modes, the ASCs of car and Taxi/Uber are greater because of high capital cost (related to vehicles) per passenger and low occupancy. Transport planners and decision makers in low and middle income countries (LMICs) can draw on the findings of this study. However, various limitations are identified and additional research is suggested. 相似文献
9.
10.
Abstract This study examines whether physical attributes of transit agencies, such as agency size, make a difference in how transit websites are designed, and how transit information is distributed. The objective of this study is to see if there is a relationship between physical and virtual representations of transit agencies. A rating instrument is developed for evaluating the quality of transit websites. Our findings suggest that transit agency size plays a key role in determining website quality: When the size of transit system is large, the information about the agency is too complex to be effectively presented on web pages. Thus, the quality of the large agencies’ websites is lower than medium-sized agencies. Instead, we find that large agencies attempt to design more user-friendly sites, and provide advanced information searching tools to compensate for low information quality. Policy implications for transit agencies are discussed. 相似文献
11.
AbstractWaiting time influences the overall perception of service quality. The passenger-perceived waiting time can determine their waiting experience. The concept of waiting time refers to the comparison between the passengers' inherent tolerance of waiting and the possible improvement scenarios. This study investigates the passengers' tolerance of waiting under various scenarios of train delays in order to improve their perceived waiting time. We propose the adoption of a modern psychometric method utilizing the Rasch model to measure a subjective latent construct known as ‘wait tolerance'. The Rasch measurement provides mathematical procedures for transforming scores from an ordinal to an interval scale to observe which scenarios can reduce certain passengers' perceived waiting time in the case of a delay. Empirical results show that ‘uncontrollable circumstances', ‘friendly staff attitudes', and ‘providing appropriate messages of apology' can improve the passenger-perceived waiting time during train delays. Likewise, distinct differences are found in the passengers' tolerance of waiting in terms of various personal characteristics, such as gender, age, and train riding frequency. The findings propose the implementation of strategies for improvement by rail system operators, as well as for regulators to define a reasonable service level in the case of train delays. The reviews show possible future innovative research orientations as well. 相似文献
12.
This paper describes the nature of the impacts of walking distances and waiting time on transit use. The relative trade‐offs of walking and transfer components with other transit service attributes are also discussed. A total of 449 completed stated‐preference interviews were collected; with six observations from each respondent, the total number of observations was 2694. This data set was used to estimate the coefficients in different utility functions using a random parameters logit model. The results demonstrated that walking distances to and from transit stops have important and significant nonlinear negative influences on the attractiveness of transit. Transfer waiting time was also shown to have a significant nonlinear negative impact on transit attractiveness. The random parameters logit model had a better model fit than the standard logit model. Some of the findings obtained here are novel, while others are consistent with previous works. These findings have implications for both theory and practice. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
13.
This paper introduces an innovative transportation concept called Flexible Mobility on Demand (FMOD), which provides personalized services to passengers. FMOD is a demand responsive system in which a list of travel options is provided in real-time to each passenger request. The system provides passengers with flexibility to choose from a menu that is optimized in an assortment optimization framework. For operators, there is flexibility in terms of vehicle allocation to different service types: taxi, shared-taxi and mini-bus. The allocation of the available fleet to these three services is carried out dynamically so that vehicles can change roles during the day. The FMOD system is built based on a choice model and consumer surplus is taken into account in order to improve passenger satisfaction. Furthermore, profits of the operators are expected to increase since the system adapts to changing demand patterns. In this paper, we introduce the concept of FMOD and present preliminary simulation results. It is shown that the dynamic allocation of the vehicles to different services provides significant benefits over static allocation. Furthermore, it is observed that the trade-off between consumer surplus and operator’s profit is critical. The optimization model is adapted in order to take into account this trade-off by controlling the level of passenger satisfaction. It is shown that with such control mechanisms FMOD provides improved results in terms of both profit and consumer surplus. 相似文献
14.
Recent studies to evaluate the quality of transit service are generating a good amount of renewed interest in an old idea, the passenger's perspective; this new interest stems from recognizing that transit service quality should be characterised, measured, and managed by parameters capturing both passenger and transit operator perspectives. However, although the selected parameters are user‐oriented in their input, the output may not be as user‐oriented as considered, and the number or the percentage of passengers is often neglected. As a result, the findings are often misleading because the perspectives of transit operators dominate. Therefore, academics and practitioners must rethink their strategies of quality analysis of public transportation by stressing more on the role of passengers. These challenges are addressed in this paper with a practical, simple, and holistic framework, for Transit Quality (TRANSQUAL). This framework provides for the involvement of all stakeholders in the characterisation, measurement, and management of the stages of quality monitoring, which is jointly analyzed at different planning levels. In the characterization stage, the framework supports the selection of parameters to be monitored. The measurement stage sets and measures four quality areas in terms of percentage of passengers who expect a predefined level of service, for whom the service is designed, who receive the planned service, and who perceive the service as delivered. The management stage computes the differences between these percentages, points out criticalities, and recommends corrective actions. These stages are investigated in‐depth, integrated, and discussed in a real‐life case study. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
15.
This paper focuses on how to minimize the total passenger waiting time at stations by computing and adjusting train timetables for a rail corridor with given time-varying origin-to-destination passenger demand matrices. Given predetermined train skip-stop patterns, a unified quadratic integer programming model with linear constraints is developed to jointly synchronize effective passenger loading time windows and train arrival and departure times at each station. A set of quadratic and quasi-quadratic objective functions are proposed to precisely formulate the total waiting time under both minute-dependent demand and hour-dependent demand volumes from different origin–destination pairs. We construct mathematically rigorous and algorithmically tractable nonlinear mixed integer programming models for both real-time scheduling and medium-term planning applications. The proposed models are implemented using general purpose high-level optimization solvers, and the model effectiveness is further examined through numerical experiments of real-world rail train timetabling test cases. 相似文献
16.
Abstract This paper examines whether a dwell time reduction on a high-intensity metro service, as a result of a series of accessibility enhancements, can contribute to an increased level of service and accessible public transport for passengers together with a reduction in costs for the operator. Actual train operation data were collected by on-site observations and from London Underground Ltd. A simple simulation is built to represent the effect on the overall cycle times of trains if certain parameters (e.g. dwell time) are changed. Four models are developed, concerning: (1) step height between train and platform, (2) an assumption of passenger service time to be no longer than 20 s, (3) door width and (4) the combination of step height and door width. From the application of the models it appears that the fourth model provides the highest reduction in dwell time and diminishes the overall cycle times of trains. However, it is the most expensive to implement as it requires work to raise platforms and the purchase of new rolling stock. 相似文献
17.
This paper focuses on developing mathematical optimization models for the train timetabling problem with respect to dynamic travel demand and capacity constraints. The train scheduling models presented in this paper aim to minimize passenger waiting times at public transit terminals. Linear and non-linear formulations of the problem are presented. The non-linear formulation is then improved through introducing service frequency variables. Heuristic rules are suggested and embedded in the improved non-linear formulation to reduce the computational time effort needed to find the upper bound. The effectiveness of the proposed train timetabling models is illustrated through the application to an underground urban rail line in the city of Tehran. The results demonstrate the effectiveness of the proposed demand-oriented train timetabling models, in terms of decreasing passenger waiting times. Compared to the baseline and regular timetables, total waiting time is reduced by 6.36% and 10.55% respectively, through the proposed mathematical optimization models. 相似文献
18.
Few studies have been conducted on the service quality (SQ) of bus transit in developing countries. This paper presents a structural equation modeling (SEM) approach to identifying the relationships among major attributes that affect the SQ of bus transit in the city of Dhaka in Bangladesh. Specifically, 22 bus transit SQ attributes, drawn from 655 questionnaires, are used to develop different SEM models for the city. Along with stated preferences, the effect of three latent variables on SQ is analyzed. Among the developed models, the best model is selected by using different statistical approaches. With the best model, selected attributes are rated according to their relative importance on SQ. Acknowledging limited resources of a developing nation, this study gives a clear way ahead to planners, operating companies and transport managers to design appropriate transport policies which will ensure more effective services to current bus users as well as attracting new passengers. 相似文献
19.
The purpose of this study was to determine the relationship between bus service satisfaction and the transport mode of choice among university students in Qatar. The degree of bus service satisfaction was collected directly from questionnaire surveys, in which university students were asked questions in relation to their satisfaction with the bus service they used and their transport mode of choice. These questions were categorized into three factors according to confirmatory factor analysis: service at bus stops, service of busses, and service of drivers. Furthermore, the students were asked which mode of transport they used given the choice between public and private transport. This study presents a structural equation model to determine how much bus service satisfaction affects people's decisions about their transport mode. The results from the analysis showed that three key factors—namely, service at bus stops, service of busses, and service of bus drivers—were strongly correlated to the mode of choice. In particular, the bus stop was strongly associated with ease of use, shade, cleanliness, safety, and crowdedness level, while the bus itself influenced reliability, travel time, and frequency. Complying with traffic laws and the driver's attitude were also important contributors to the level of bus service satisfaction. Ultimately, this study will be beneficial for policy/decision‐makers. It will allow them to determine what needs to be accomplished to encourage people to use public transportation. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
20.
Charles Broxmeyer 《运输规划与技术》2013,36(4):287-289
Automated short headway urban transportation systems were viewed in the early Seventies as a possible means of effecting radical change in the type of transit service available in cities. However, interest has declined and government‐sponsored efforts in this area have ceased. The decline in interest was accompanied by much debate among the advocates of the various forms of transit. However, it does not appear to reflect the potential merits and limitations of short headway systems as disclosed by analysis. This paper provides a basis for comparing short headway systems of citywide scale with conventional transit means. The limitations inherent in rapid rail installations are reviewed and contrasted with the performance of short headway systems. Illustrative, large‐scale guideway configurations for systems operating in the three‐second headway range are defined and levels of service are deduced using simplified heuristic methods. A basis is provided for specification and analysis of systems conforming to realistic spatial and passenger‐movement constraints. It is concluded that automated transit systems operating in the three‐second headway range remain viable candidates for large‐scale installations. 相似文献