首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A sophisticated flight schedule might be easily disrupted due to adverse weather, aircraft mechanical failures, crew absences, etc. Airlines incur huge costs stemming from such flight schedule disruptions in addition to the serious inconveniences experienced by passengers. Therefore, an efficient recovery solution that simultaneously decreases an airline's recovery cost while simultaneously mitigating passenger dissatisfaction is of great importance to the airline industry. In this paper, we study the integrated airline service recovery problem in which the aircraft and passenger schedule recovery problems are simultaneously addressed, with the objective of minimizing aircraft recovery and operating costs, passenger itinerary delay cost, and passenger itinerary cancellation cost.Recognizing the inherent difficulty in modeling the integrated airline service recovery problem within a single formulation (due to its huge solution space and quick response requirement), we propose a three-stage sequential math-heuristic framework to efficiently solve this problem, wherein the flight schedules and aircraft rotations are recovered in the first stage, Then, a flight rescheduling problem and passenger schedule recovery problems are iteratively solved in the next two stages. Time-space network flow representations, along with mixed-integer programming formulations, and algorithms that take advantages of the underlying problem structures, are proposed for each of three stages. This algorithm was tested on realistic data provided by the ROADEF 2009 challenge and the computational results reveal that our algorithm generated the best solution in nearly 72% of the test instances, and a near-optimal solution was achieved in the remaining instances within an acceptable timeframe. Furthermore, we also ran additional computational runs to explore the underlying characteristics of the proposed algorithm, and the recorded insights can serve as a useful guide during practical implementations of this algorithm.  相似文献   

2.

An important decision faced by airline schedulers is how to adapt the flight schedule and aircraft assignment to unforeseen perturbations in an established schedule. In the face of unforeseen aircraft delays, schedulers have to decide which flights to delay, and when delays become excessive, which to cancel. Current scheduling models deal with simple decision problems of delay or cancellation, but not with both simultaneously. But in practice the optimal decision may involve results from the integration of both flight cancellations and delays. In Part I of this paper, a quadratic programming model for the integration decision problem is given. The model can formulate the integration of flight cancellations and delays as well as some special cases, such as the ferrying of surplus aircraft and the possibility of swapping different types of aircraft. In this paper, based on the special structure of the model, an effective algorithm is presented, sufficient computational experiments are conducted and some results are reported. These show that we can expect to obtain a sufficiently good solution in terms of reasonable CPU time.  相似文献   

3.
In this paper, we analyze the effectiveness of the 2010 Tarmac Delay Rule from a passenger-centric point of view. The Tarmac Delay Rule stipulates that aircraft lift-off, or an opportunity for passengers to deplane, must occur no later than 3 h after the cabin door closure at the gate of the departure airport; and that an opportunity for passengers to deplane must occur no later than 3 h after the touchdown at the arrival airport. The Tarmac Delay Rule aims to protect enplaned passengers on commercial aircraft from excessively long delays on the tarmac upon taxi-out or taxi-in, and monetarily penalizes airlines that violate the stipulated 3-h tarmac time limit. Comparing the actual flight schedule and delay data after the Tarmac Delay Rule was in effect with that before, we find that the Rule has been highly effective in reducing the frequency of occurrence of long tarmac times. However, another significant effect of the rule has been the rise in flight cancellation rates. Cancellations result in passengers requiring rebooking, and often lead to extensive delay in reaching their final destinations. Using an algorithm to estimate passenger delay, we quantify delays to passengers in 2007, before the Tarmac Delay Rule was enacted, and compare these delays to those estimated for hypothetical scenarios with the Tarmac Delay Rule in effect for that same year. Our delay estimates are calculated using U.S. Department of Transportation data from 2007. Through our results and several sensitivity analyses, we show that the overall impact of the current Tarmac Delay Rule is a significant increase in passenger delays, especially for passengers scheduled to travel on the flights which are at risk of long tarmac delays. We evaluate the impacts on passengers of a number of rule variations, including changes to the maximum time on the tarmac, and variations in that maximum by time-of-day. Through extensive scenario analyses, we conclude that a better balance between the conflicting objectives of reducing the frequency of long tarmac times and reducing total passenger delays can be achieved through a modified version of the existing rule. This modified version involves increasing the tarmac time limit to 3.5 h and only applying the rule to flights with planned departure times before 5pm. Finally, in order to implement the Rule more effectively, we suggest the tarmac time limit to be defined in terms of the time when the aircraft begin returning to the gate instead of being defined in terms of the time when passengers are allowed to deplane.  相似文献   

4.
The flight schedule of an airline is the primary factor in finding the most effective and efficient deployment of the airline's resources. The flight schedule process aims at finding a set of routes with associated aircraft type, frequency of service and times of departures and arrivals in order to satisfy a specific objective such as profit maximization. In this paper, we develop a two‐phase heuristic model for airline frequency planning and aircraft routing for small size airlines. The first phase develops a frequency plan using an economic equilibrium model between passenger demand for flying a particular route and aircraft operating characteristics. The second phase uses a time‐of‐day model to develop an assignment algorithm for aircraft routing.  相似文献   

5.
Abstract

This paper presents a novel application of a Method of Inequality-based Multi-objective Genetic Algorithm (MMGA) to generate an efficient time-effective multi-fleet aircraft routing algorithm in response to the schedule disruption of short-haul flights. It attempts to optimize objective functions involving ground turn-around times, flight connections, flight swaps, total flight delay time and a 30-minute maximum delay time of original schedules. The MMGA approach, which combines a traditional Genetic Algorithm (GA) with a multi-objective optimization method, can address multiple objectives at the same time, then explore the optimal solution. The airline schedule disruption management problem is traditionally solved by Operations Research (OR) techniques that always require a precise mathematical model. However, airline operations involve too many factors that must be considered dynamically, making a precise mathematical model difficult to define. Experimental results based on a real airline flight schedule demonstrate that the proposed method, Multi-objective Optimization Airline Disruption Management by GA, can recover the perturbation efficiently within a very short time. Our results further demonstrate that the application can yield high quality solutions quickly and, consequently, has potential to be employed as a real-time decision support tool for practical complex airline operations.  相似文献   

6.
This paper analyzes benefits from aviation infrastructure investment under competitive supply-demand equilibrium. The analysis recognizes that, in the air transportation system where economies of density is an inherent characteristic, capacity change would trigger a complicated set of adjustment of and interplay among passenger demand, air fare, flight frequency, aircraft size, and flight delays, leading to an equilibrium shift. An analytical model that incorporates these elements is developed. The results from comparative static analysis show that capacity constraint suppresses demand, reduces flight frequency, and increases passenger generalized cost. Our numerical analysis further reveals that, by switching to larger aircraft size, airlines manage to offset part of the delay effect on unit operating cost, and charge passengers lower fare. With higher capacity, airlines tend to raise both fare and frequency while decreasing aircraft size. More demand emerges in the market, with reduced generalized cost for each traveler. The marginal benefit brought by capacity expansion diminishes as the capacity-demand imbalance becomes less severe. Existing passengers in the market receive most of the benefit, followed by airlines. The welfare gains from induced demand are much smaller. The equilibrium approach yields more plausible investment benefit estimates than does the conventional method. In particular, when forecasting future demand the equilibrium approach is capable of preventing the occurrence of excessive high delays.  相似文献   

7.
Qu Zhen  Shi Jing 《先进运输杂志》2016,50(8):1990-2014
This paper considers the train rescheduling problem with train delay in urban subway network. With the objective of minimizing the negative effect of train delay to passengers, which is quantified with a weighted combination of travel time cost and the cost of giving up the planned trips, train rescheduling model is proposed to jointly synchronize both train delay operation constraints and passenger behavior choices. Space–time network is proposed to describe passenger schedule‐based path choices and obtain the shortest travel times. Impatience time is defined to describe the intolerance of passengers to train delay. By comparing the increased travel time due to train delay with the passenger impatience time, a binary variable is defined to represent whether the passenger will give up their planned trips or not. The proposed train rescheduling model is implemented using genetic algorithm, and the model effectiveness is further examined through numerical experiments of real‐world urban subway train timetabling test. Duration effects of the train delay to the optimization results are analyzed. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.

Environmental charges are one of the economic instruments for controlling externalities. Their application to commercial flights has become a preferred method of encouraging the sustainable development of the air transport industry. Two kinds of externalities, aircraft noise and engine emissions, both generating profound impacts on human beings and on the environment, are considered here. The hedonic price method is applied to calculate the social cost of aircraft noise during the landing and take-off stages of the flight. The marginal impact of each flight with specific aircraft/engine combinations is derived for the allocation of aggregate noise social costs. In contrast, the dose - response method is applied to estimate the social cost of each engine exhaust pollutant during different flight modes. The combination of aircraft noise and engine emissions social costs is then evaluated on the basis of several environmental charge mechanism scenarios, using Amsterdam Airport Schiphol as a case study. It is shown that the current noise or engine emissions related charges at airports are lower than the actual social costs of their respective externalities. The implications of charge mechanism scenarios are subsequently discussed and evaluated in terms of their impacts on airline costs, airfares and passenger demand.  相似文献   

9.
Abstract

A real-time operation monitoring system – Aircraft Turnaround Monitoring System – is developed based on a system framework to monitor aircraft turnaround operations at an airport. Mobile computing devices (PDAs) and wireless network technology General Packet Radio Service (GPRS) are used to implement the real-time monitoring system for an airline. System implementation and test results indicate that real-time operation monitoring can potentially reduce delays occurring from airline operations. Proactive measures can be taken immediately by ground handling staff to reduce delays, once the risk of delays and potential delay propagation is identified. The availability of detailed operating data can help airlines identify the root delay causes from complex connections among aircraft, flight/cabin crew and passengers. In addition, these operating data also shed some light on the future development of aircraft routing algorithms in order to consider explicitly stochastic disruptions and delay propagation in airline schedule planning.  相似文献   

10.
ABSTRACT

Airport terminals are dynamic environments and security/passport services generally constitute costly bottlenecks in terminals. Increases in the number of airline passengers compels airport terminals to provide more efficient services to its customers under space and resource limitations. This study examines the level of service of passenger processes at Istanbul Atatürk Airport by constructing a comprehensive simulation model. It focuses mainly on passport control services and passenger transfer security services because of the airport's hub status and the strategy of Turkish Airlines. The increasing number of transfer passengers may cause disruptions in departure flight schedules due to slow passenger processes. After validating the model, we investigate the consequences of three main alternative solutions, including 17 sub-scenarios, to capture target quality levels. Finally, we provide the results for each scenario to investigate the optimum allocation of resources to terminal operations.  相似文献   

11.
In this paper, we build an aggregate demand model for air passenger traffic in a hub-and-spoke network. This model considers the roles of airline service variables such as service frequency, aircraft size, ticket price, flight distance, and number of spokes in the network. It also takes into account the influence of local passengers and social-economic and demographic conditions in the spoke and hub metropolitan areas. The hub airport capacity, which has a significant impact on service quality in the hub airport and in the whole hub-and-spoke network, is also taken into consideration.Our demand model reveals that airlines can attract more connecting passengers in a hub-and-spoke network by increasing service frequency than by increasing aircraft size in the same percentage. Our research confirms the importance of local service to connecting passengers, and finds that, interestingly, airlines’ services in the first flight leg are more important to attract passengers than those in the second flight segment. Based on data in this study, we also find that a 1% reduction of ticket price will bring about 0.9% more connecting passengers, and a 1% increase of airport acceptance rate can bring about 0.35% more connecting passengers in the network, with all else equal. These findings are helpful for airlines to understand the effects of changing their services, and also useful for us to quantify the benefits of hub airport expansion projects.At the end of this paper, we give an example as an application to demonstrate how the developed demand model could be used to valuate passengers’ direct benefit from airport capacity expansion.  相似文献   

12.
We consider the assignment of gates to arriving and departing flights at a large hub airport. This problem is highly complex even in planning stage when all flight arrivals and departures are assumed to be known precisely in advance. There are various considerations that are involved while assigning gates to incoming and outgoing flights (such a flight pair for the same aircraft is called a turn) at an airport. Different gates have restrictions, such as adjacency, last‐in first‐out gates and towing requirements, which are known from the structure and layout of the airport. Some of the cost components in the objective function of the basic assignment model include notional penalty for not being able to assign a gate to an aircraft, penalty for the cost of towing an aircraft with a long layover, and penalty for not assigning preferred gates to certain turns. One of the major contributions of this paper is to provide mathematical model for all these complex constraints that are observed at a real airport. Further, we study the problem in both planning and operations modes simultaneously, and such an attempt is, perhaps, unique and unprecedented. For planning mode, we sequentially introduce new additional objectives to our gate assignment problem that have not been studied in the literature so far—(i) maximization of passenger connection revenues, (ii) minimization of zone usage costs, and (iii) maximization of gate plan robustness—and include them to the model along with the relevant constraints. For operations mode, the main objectives studied in this paper are recovery of schedule by minimizing schedule variations and maintaining feasibility by minimal retiming in the event of major disruptions. Additionally, the operations mode models must have very, very short run times of the order of a few seconds. These models are then applied to a functional airline at one of its most congested hubs. Implementation is carried out using Optimization Programming Language, and computational results for actual data sets are reported. For the planning mode, analyst perception of weights for the different objectives in the multi‐objective model is used wherever actual dollar value of the objective coefficient is not available. The results are also reported for large, reasonable changes in objective function coefficients. For the operations mode, flight delays are simulated, and the performance of the model is studied. The final results indicate that it is possible to apply this model to even large real‐life problems instances to optimality within short run times with clever formulation of conventional continuous time assignment model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Abstract

When disturbances make it impossible to realise the planned flight schedule, the dispatcher at the airline operational centre defines a new flight schedule based on airline policy, in order to reduce the negative effects of these perturbations. Depending on airline policy, when designing the new flight schedule, the dispatcher delays or cancels some flights and reassigns some flights to available aircraft. In this paper, a decision support system (DSS) for solving the airline schedule disturbances problem is developed aiming to assist decision makers in handling disturbances in real-time. The system is based on a heuristic algorithm, which generates a list of different feasible schedules ordered according to the value of an objective function. The dispatcher can thus select and implement one of them. In this paper, the possibilities of DSS are illustrated by real numerical examples that concern JAT Airways' flight schedule disturbances.  相似文献   

14.
The passenger loading problem is defined as that of determining the distribution of passengers that will be carried on each flight in a given market over the course of the day. This problem is stochastic in nature, and must take into account the fact that as some flights become booked up, passengers may spill to adjacent flights, or may choose not to fly on that airline. A precise model of the loading process is developed and solved using an efficient numerical procedure. Several approximations are introduced and tested which further improve the overall efficiency. The model represents a more rigorous solution approach than has appeared previously in the literature, and as such could be used to evaluate simpler approximations. It is fast enough, however, to be used as an interactive schedule evaluation and design tool.  相似文献   

15.

A moving sidewalk system installed at an airport pier finger is analyzed. The optimal length of the moving sidewalk and the optimal spacing between the access points which minimize the total cost of the system are obtained using methods of calculus, for a number of cases based on the different proportions of arriving, departing and transferring passengers and for two different types of moving sidewalks: elevated, at‐grade.

The optimal length of the moving sidewalk is shown to be linearly related to the length of the concourse, and to the total passenger demand. The effect due to preticketed transferees is insignificant.

The optimal spacing between access points is shown to be proportional to the square‐root of either the cost of an access escalator or the cost of inconvenience to a passenger due to an intermediate gap, depending on the moving sidewalk system under consideration. It also changes with the percentage of preticketed transferees.  相似文献   

16.
The aircraft maintenance scheduling is one among the major decisions an airline has to make during its operation. Though maintenance scheduling comes as an end stage in an airline operation, it has potential for cost savings. Maintenance scheduling is an easily understood but difficult to solve problem. Given a flight schedule with aircraft assigned to it, the aircraft maintenance-scheduling problem is to determine which aircraft should fly which segment and when and where each aircraft should undergo different levels of maintenance check required by the Federal Aviation Administration. The objective is to minimize the maintenance cost and any costs incurred during the re-assignment of aircraft to the flight segments.This paper provides a complete formulation for maintenance scheduling and a heuristic approach to solve the problem. The heuristic procedure provides good solutions in reasonable computation time. This model can be used by mid-sized airline corporations to optimize their maintenance costs.  相似文献   

17.
This paper proposes a bi-level model to solve the timetable design problem for an urban rail line. The upper level model aims at determining the headways between trains to minimize total passenger cost, which includes not only the usual perceived travel time cost, but also penalties during travel. With the headways given by the upper level model, passengers’ arrival times at their origin stops are determined by the lower level model, in which the cost-minimizing behavior of each passenger is taken into account. To make the model more realistic, explicit capacity constraints of individual trains are considered. With these constraints, passengers cannot board a full train, but wait in queues for the next coming train. A two-stage genetic algorithm incorporating the method of successive averages is introduced to solve the bi-level model. Two hypothetical examples and a real world case are employed to evaluate the effectiveness of the proposed bi-level model and algorithm. Results show that the bi-level model performs well in reducing total passenger cost, especially in reducing waiting time cost and penalties. And the section loading-rates of trains in the optimized timetable are more balanced than the even-headway timetable. The sensitivity analyses show that passenger’s desired arrival time interval at destination and crowding penalty factor have a high influence on the optimal solution. And with the dispersing of passengers' desired arrival time intervals or the increase of crowding penalty factor, the section loading-rates of trains become more balanced.  相似文献   

18.
We address the robust weekly aircraft routing and retiming problem, which requires determining weekly schedules for a heterogeneous fleet that maximizes the aircraft on-time performance, minimizes the total delay, and minimizes the number of delayed passengers. The fleet is required to serve a set of flights having known departure time windows while satisfying maintenance constraints. All flights are subject to random delays that may propagate through the network. We propose to solve this problem using a hybrid optimization-simulation approach based on a novel mixed-integer nonlinear programming model for the robust weekly aircraft maintenance routing problem. For this model, we provide an equivalent mixed-integer linear programming formulation that can be solved using a commercial solver. Furthermore, we describe a Monte-Carlo-based procedure for sequentially adjusting the flight departure times. We perform an extensive computational study using instances obtained from a major international airline, having up to 3387 flights and 164 aircraft, which demonstrates the efficacy of the proposed approach. Using the simulation software SimAir to assess the robustness of the solutions produced by our approach in comparison with that for the original solutions implemented by the airline, we found that on-time performance was improved by 9.8–16.0%, cumulative delay was reduced by 25.4–33.1%, and the number of delayed passengers was reduced by 8.2–51.6%.  相似文献   

19.
This paper examines the problem of proper (optimal) control over the seat allocation on flights. Given a heterogeneous fleet of aircraft types, multi-leg flights, a number of different passenger categories, and cancelations, an airline's objective is to devise an effective system which aids in setting the seat allocation targets for each category of passengers on each flight. This issue is analyzed by a number of authors in the context of economic, simulation based, probabilistic, and mathematical programming studies. We present an attempt to address this problem from the systems prospective emphasizing characteristics such as: passenger cancelations, multi-leg flights, and rolling tactical planning time horizon. Starting from a very simple network flow models for a single flight with a number of intermediate stops, a number of progressively complex models are presented. The airline flights and the seat allocation system are represented as a generalized network flow model (with gains/losses on arcs) with the objective of flow maximization (profit maximization). This modelling approach does not claim to replace the seat allocation approaches presented in Alstrup et al. (1985), Mayer (1976), Richter (1982), Simpson (1985a), and Wang (1983), but rather construct seat allocations utilizing some of those referenced schemes in a parameter setting mode for a large network model. The objective of this paper is not to report on computational experiments, but to present a modeling approach which seems to be promising, if somewhat speculative.  相似文献   

20.
The potential of turboprops for reducing aviation fuel consumption   总被引:1,自引:0,他引:1  
To assist in aviation systems planning in the context of fuel price uncertainty and environmental regulation, we take a total logistics cost approach and evaluate three representative aircraft (narrow body, regional jet, and turboprop) for operating and passenger preference costs over a range of fuel prices. Homogenous fleets of each vehicle category are compared for operating and passenger costs over a range of fuel prices and route distances and the minimum cost fleet mix is determined. In general, as fuel prices increase, the turboprop offers a lower operating cost per seat over a wider range of distances when compared with both jet aircraft models. The inclusion of passenger costs along with operating costs decreases the number of fuel price and distance pairs where the turboprop exhibits the lower cost. This analysis shows that the aircraft that exhibits the lowest cost is highly sensitive to fuel prices and passenger costs and points to the important balance between saving fuel and serving passengers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号