首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
In this paper we study the problem of determining the optimum cycle and phase lengths for isolated signalized intersections. Calculation of the optimal cycle and green phase lengths is based on the minimization of the average control delay experienced by all vehicles that arrive at the intersection within a given time period. We consider under-saturated as well as over-saturated conditions at isolated intersections. The defined traffic signal timing problem, that belongs to the class of combinatorial optimization problems, is solved using the Bee Colony Optimization (BCO) metaheuristic approach. The BCO is a biologically inspired method that explores collective intelligence applied by honey bees during the nectar collecting process. The numerical experiments performed on some examples show that the proposed approach is competitive with other methods. The obtained results show that the proposed approach is capable of generating high-quality solutions within negligible processing times.  相似文献   

2.
Short-term traffic volume forecasting represents a critical need for Intelligent Transportation Systems. This paper develops a novel forecasting approach inspired by human memory, called the spinning network (SPN). The approach is then used for short-term traffic volume forecasting, utilizing a data set compiled from real-world traffic volume data obtained from the Hampton Roads traffic operations center in Virginia. To assess the accuracy of the SPN approach, its performance is compared to two other approaches, namely a back propagation neural network and a nearest neighbor approach. The transferability of the SPN approach and its ability to forecast for longer time periods into the future is also assessed. The results of the performance testing conducted in this paper demonstrates the superior predictive accuracy and drastically lower computational requirements of the SPN compared to either the neural network or the nearest neighbor approach. The tests also confirm the ability of the SPN to predict traffic volumes for longer time periods into the future, as well as the transferability of the approach to other sites.  相似文献   

3.
Disruptions in carrying out planned bus schedules occur daily in many public transit companies. Disturbances are often so large that it is necessary to perform re-planning of planned bus and crew activities. Dispatchers in charge of traffic operations must frequently find an answer to the following question in a very short period of time: How should available buses be distributed among bus routes in order to minimize total passengers' waiting time on the network? We propose a model for assigning buses to scheduled routes when there is a shortage of buses. The proposed model is based on the bee colony optimization (BCO) technique. It is a biologically inspired method that explores collective intelligence applied by honey bees during the nectar collecting process. It has been shown that this developed BCO approach can generate high-quality solutions within negligible processing times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号