首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Abstract

The motorcycle is a popular mode of transport in Malaysia and developing Asian countries, but its significant representation in the traffic mix results in high rates of motorcycle accidents. As a result, the Malaysian Government decided to segregate motorcycle traffic along its new federal roads as an engineering approach to reduce accidents. However, traffic engineers needed to know the maximum traffic a motorcycle lane could accommodate. Despite substantial literature related to speed–flow–density relationships and capacities of various transport facilities, there is a knowledge gap regarding motorcycle lanes. This paper establishes motorcycle speed–flow–density relationships and capacities of exclusive motorcycle lanes in Malaysia. Observations of motorcycle flows and speeds were conducted along existing and experimental motorcycle lanes. Motorcycle speed–density data were aggregated and plotted for two types of observable motorcycle riding behaviour patterns that were influenced by the widths of a motorcycle lane: the headway pattern (lane width ≤ 1.7 m) and the space pattern (lane width > 1.7 m). For both riding patterns, regression analysis of motorcycle speed–density data best fits the logarithmic model and consequently the motorcycle flow–density and speed–flow models are derived. Motorcycle lane capacities for headway and space riding patterns are estimated as 3300 mc/hr/lane and 2200 mc/hr/m, respectively.  相似文献   

3.
Recent years have seen a renewed interest in Variable Speed Limit (VSL) strategies. New opportunities for VSL as a freeway metering mechanism or a homogenization scheme to reduce speed differences and lane changing maneuvers are being explored. This paper examines both the macroscopic and microscopic effects of different speed limits on a traffic stream, especially when adopting low speed limits. To that end, data from a VSL experiment carried out on a freeway in Spain are used. Data include vehicle counts, speeds and occupancy per lane, as well as lane changing rates for three days, each with a different fixed speed limit (80 km/h, 60 km/h, and 40 km/h). Results reveal some of the mechanisms through which VSL affects traffic performance, specifically the flow and speed distribution across lanes, as well as the ensuing lane changing maneuvers. It is confirmed that the lower the speed limit, the higher the occupancy to achieve a given flow. This result has been observed even for relatively high flows and low speed limits. For instance, a stable flow of 1942 veh/h/lane has been measured with the 40 km/h speed limit in force. The corresponding occupancy was 33%, doubling the typical occupancy for this flow in the absence of speed limits. This means that VSL strategies aiming to restrict the mainline flow on a freeway by using low speed limits will need to be applied carefully, avoiding conditions as the ones presented here, where speed limits have a reduced ability to limit flows. On the other hand, VSL strategies trying to get the most from the increased vehicle storage capacity of freeways under low speed limits might be rather promising. Additionally, results show that lower speed limits increase the speed differences across lanes for moderate demands. This, in turn, also increases the lane changing rate. This means that VSL strategies aiming to homogenize traffic and reduce lane changing activity might not be successful when adopting such low speed limits. In contrast, lower speed limits widen the range of flows under uniform lane flow distributions, so that, even for moderate to low demands, the under-utilization of any lane is avoided. These findings are useful for the development of better traffic models that are able to emulate these effects. Moreover, they are crucial for the implementation and assessment of VSL strategies and other traffic control algorithms.  相似文献   

4.
Abstract

Understanding work zone traffic behavior is important for the planning and operation of work zones. The objective of this paper is to develop a mathematical model of work zone traffic flow elements by analyzing the relationships between speed, flow, and density that can be used to estimate the capacity of work zones. Traffic flow data were collected from 22 work zone sites on South Carolina interstate highways. The scatter plots of the collected data demonstrate that the relationship between speed and density does not follow Greenshields’ linear model. A non-linear hyperbolic model was developed to describe the relationship between speed and density. Using this model the capacity of a work zone was estimated to be 1550 passenger cars per hour for 2-lane to 1-lane closures. Adjustments to this capacity value to consider other types of vehicle as well as the work zone intensity are provided. Highway agencies can use this estimated capacity along with anticipated traffic demand to schedule work zone operations to avoid long periods of over-saturation.

The tapered approach to work zone lane closures used by South Carolina is similar to methods used in work zones throughout the world. The authors believe that the methodology described in this paper for modeling work zone traffic as well as estimating work zone capacity is transferable to other countries. The conversion of actual volumes to passenger car equivalents may have to be modified due to the significant differences in traffic makeup between the United States and other countries.  相似文献   

5.
We propose a macroscopic model of lane‐changing that is consistent with car‐following behavior on a two‐lane highway. Using linear stability theory, we find that lane‐changing affects the stable region and the propagation speeds of the first‐order and second‐order waves. In analyzing a small disturbance, our model effectively reproduces certain non‐equilibrium traffic‐flow phenomena—small disturbance instability, stop‐and‐go waves, and local clusters that are affected by lane‐changing. The model also gives the flow‐density relationships in terms of the actual flow rate, the lane‐changing rate, and the difference between the potential flow rate (the flow rate that would have occurred without lane‐changing) and the actual flow rate. The relationships between the actual flow rate and traffic density and between the lane‐changing rate and traffic density follow a reverse‐lambda shape, which is largely consistent with observed traffic phenomena.  相似文献   

6.
A continuum model for two-lane traffic flow is developed using the theory of kinematic waves in which the wavespeeds in the two lanes are assumed constant but unequal. The transient behaviour is found exactly using Riemann's method of characteristics and an asymptotic model of the long time flow is described. It is shown, that for large times, the traffic concentration moves with a weighted mean wavespeed of the two lanes and disperses about this mean speed as a result of interlane concentration differences generated by the relative wavespeeds. The dispersion can be described by a virtual coefficient of diffusion proportional to the square of the differences of the two wavespeeds and inversely proportional to the rate of lane changing. The technique is extended to describe three-lane traffic flow and to include the dependence of wavespeed upon concentration.  相似文献   

7.
The fundamental diagram, as the graphical representation of the relationships among traffic flow, speed, and density, has been the foundation of traffic flow theory and transportation engineering. Seventy-five years after the seminal Greenshields model, a variety of models have been proposed to mathematically represent the speed-density relationship which underlies the fundamental diagram. Observed in these models was a clear path toward two competing goals: mathematical elegance and empirical accuracy. As the latest development of such a pursuit, this paper presents a family of speed-density models with varying numbers of parameters. All of these models perform satisfactorily and have physically meaningful parameters. In addition, speed variation with traffic density is accounted for; this enables statistical approaches to traffic flow analysis. The results of this paper not only improve our understanding of traffic flow but also provide a sound basis for transportation engineering studies.  相似文献   

8.
To increase our understanding of the operations of traffic system, a visco‐elastic traffic model was proposed in analogy of non‐Newtonian fluid mechanics. The traffic model is based on mass and momentum conservations, and includes a constitutive relation similar to that of linear visco‐elastic fluids. The further inclusion of the elastic effect allows us to describe a high‐order traffic model more comprehensively because the use of relaxation time indicates that vehicle drivers adjust their time headway in a reasonable and safe range. The self‐organizing behaviour is described by introducing the effects of pressure and visco‐elasticity from the point of view in fluid mechanics. Both the viscosity and elasticity can be determined by using the relaxation time and the traffic sound speed. The sound speed can be approximately represented by the road operational parameters including the free‐flow speed, the jam density, and the density of saturation if the jam pressure in traffic flows is identical to the total pressure at the flow saturation point. A linear stability analysis showed that the traffic flow should be absolutely unstable for disturbances with short spatial wavelengths. There are two critical points of regime transition in traffic flows. The first point happens at the density of saturation, and the second point occurs at a density relating on the sound speed and the fundamental diagram of traffic flows. By using a triangular form flow–density relation, a numerical test based on the new model is carried out for congested traffic flows on a loop road without ramp effect. The numerical results are discussed and compared with the result of theoretical analysis and observation data of traffic flows. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
The control of the evolution of road traffic streams is highly related to productivity, safety, sustainability and, even, comfort. Although, nowadays, the findings from research efforts and the development of new technologies enable accurate traffic forecasts in almost any conditions, these calculations are usually limited by the data and the equipment available. Most traffic management centres depend on the data provided, at best, by double-loop detectors. These loops supply time means over different aggregation periods, which are indiscriminately used as the bases for subsequent estimations. Since space mean speeds are those needed in most applications (note the fundamental relationship between flow and density in traffic flow theory), most current practice begins with an error. This paper introduces a simple algorithm that the allows estimation of space mean speeds from the data provided by the loops without the need for any additional financial outlay, as long as the traffic in each time interval of aggregation is stationary and its speed distribution is log-normal. Specifically, it is focused on the calculation of the variance of the speeds with regard to the time mean, thus making possible to use the relationship between time mean speeds and space mean speeds defined by Rakha (2005). The results obtained with real data show that the algorithm behaves well if the calculation conditions help fulfil the initial hypotheses. The primary difficulties arise with transient traffic and, in this case, other specific methodologies should be used. Data fusion seems promising in this regard. Nevertheless, it cannot be denied that the improvement provided by the algorithm turns out to be highly beneficial both when used alone in the case of stationarity or as a part of a fusion.  相似文献   

10.
Heterogeneous traffic flow, characterized by a free inter-lane exchange, has become an important issue in addressing congestion in urban areas. It is of particular interest in many developing countries, that experience a strong increase in motorcycle use. New approaches to the heterogeneous non-lane-based flow have been proposed. However insufficient empirical verification has been made to estimate vehicle interaction, that is necessary for an accurate representation of mixed-flow conditions. In this paper, we focus on the porous flow approach to capture the complex interactions. The parameters from this approach are estimated from empirical observations. Video data was recorded and processed to capture vehicle interactions at a number of road sections in Surabaya City, Indonesia. The specific behavior of each vehicle in the traffic flow was captured by developing the pore size–density distributions, analyzing the class-specific critical pore sizes, and producing the class specific speed–density and flow–density diagrams. The results reveal how critical pore sizes are based on pore size–density distributions, the flow diagram for each vehicle class, and how traffic flow relationships for motorcyclists and the other vehicles exhibit significant differences. It is concluded that the proposed approach can represent the specific behavior of the motorcyclist in heterogeneous traffic flow, in both the situations of with- and without an exclusive lane for motorcycles, can clarify motorcyclist’s behavior in terms of passenger car unit of motorcycle, and can therefore support policy making on the improvement of urban transport.  相似文献   

11.
The Intermittent Bus Lane signals setting within an area   总被引:3,自引:0,他引:3  
Intermittent Bus Lane (IBL) used for bus priority is a lane in which the status of a given section changes according to the presence or not of a bus in its spatial domain: when a bus is approaching such a section, the status of that lane is changed to BUS lane, and after the bus moves out of the section, it becomes a normal lane again, open to general traffic. Therefore when bus services are not so frequent, general traffic will not suffer much, and bus priority can still be obtained. This measure can be operating at a single city block, but if all related control parameters along bus lines are considered together, more time gains can be obtained. In this paper, the basic structure and operation of IBL around a single intersection are briefly introduced, then the construction of an objective function and its relationships with the related priority control parameters along one bus line and their simplifications are described. Finally the calculations of the priority control parameters when there are several connected bus lines within an area and some simulation results are discussed.  相似文献   

12.
For the most part, previous studies of freeway flow kinematics and dynamics (especially relating to schock wave propagation and to the fundamental diagram) have looked only at flow within a single lane. However, the perturbations in flow which make the dynamics interesting—and of practical importance—normally arise in multiple lane settings. This study examines flow-occupancy dynamics at the onset of congestion by taking into consideration the flows across all the lanes, individually. The results show that just prior to the onset of congestion, flow rates in the shoulder lane are only about 50% of the flows in the median and middle lanes. As the congestion moves upstream through a data collection station, flow rates in the two fast lanes decrease, but flow rates in the shoulder lane invariably increase. After the onset of congested operations, all three tend toward the same average occupancy and speed. These results provide support for an earlier suggestion that discontinuous flow-concentration functions are not necessary, and also help to resolve some of the questions raised by that earlier suggestion.  相似文献   

13.
Lane changes occur as many times as turning movements are needed while following a designated path. The cost of a route with many lane changes is likely to be more expensive than that with less lane changes, and unrealistic paths with impractical lane changes should be avoided for drivers' safety. In this regard, a new algorithm is developed in this study to find the realistic shortest path considering lane changing. The proposed algorithm is a modified link‐labeling Dijkstra algorithm considering the effective lane‐changing time that is a parametric function of the prevailing travel speed and traffic density. The parameters were estimated using microscopic traffic simulation data, and the numerical test demonstrated the performance of the proposed algorithm. It was found that the magnitude of the effect of the effective lane‐changing time on determining the realistic shortest path is nontrivial, and the proposed algorithm has capability to exclude links successfully where the required lane changes are practically impossible. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The sensitivity of the pollutant emissions as regards the driving speed is demonstrated using emission functions currently available from the literature. An accurate and detailed knowledge of the actual driving speeds is then fundamental for emissions estimations and inventories. However, speed information is often limited and heterogeneous. Through a European synthesis, we examine the various means of investigations: surveys, vehicle instrumentation, traffic modelling, etc.The available statistics provide a high number of reference values for passenger cars and duty vehicles by broad categories and highlight the influence of numerous factors on speed: time period, city size and area, trips origin and destination and vehicle types. Speed estimations and ranges are proposed for the driving in urban areas, on rural roads and on motorways.The significant variations of the speed according to the time of the day, to the areas of a city, and the large dispersion for a given situation raise the question of using single average values. In fact, emissions estimation can be affected by 30% by the quality of the driving speed data.  相似文献   

15.
16.
Traffic flow control in automated highway systems (AHS) is addressed. A link layer controller for a hierarchical AHS architecture is presented. The controller proposed in this paper stabilizes the vehicular density and flow around predetermined profiles in a stretch of highway using speed and lane changes as control signals. Multiple lane highways in which vehicles have different destinations and types are considered. The control laws are derived from a model based on a principle of vehicle conservation and Lyapunov stability techniques. The implementation requires only local information. Simulation results are presented.  相似文献   

17.
Increased speed variation on urban arterials is associated with reductions in both operational performance and safety. Traffic flow, mean speed, traffic control parameters and geometric design features are known to affect speed variation. An exploratory study of the relationships among these variables could provide a foundation for improving the operational and safety performance of urban arterials, however, such a study has been hampered by problems in measuring speeds. The measurement of speed has traditionally been accomplished using spot speed collection methods such as radar, laser and loop detectors. These methods can cover only limited locations, and consequently are not able to capture speed distributions along an entire network, or even throughout any single road segment. In Shanghai, it is possible to acquire the speed distribution of any roadway segment, over any period of interest, by capturing data from Shanghai’s 50,000+ taxis equipped with Global Positional Systems (GPS). These data, hereafter called Floating Car Data, were used to calculate mean speed and speed variation on 234 road segments from eight urban arterials in downtown Shanghai. Hierarchical models with random variables were developed to account for spatial correlations among segments within each arterial and heterogeneities among arterials. Considering that traffic demand changes throughout the day, AM peak, Noon off-peak, and PM peak hours were studied separately. Results showed that increases in number of lanes and number of access points, the presence of bus stops and increases in mean speed were all associated with increased speed variation, and that increases in traffic volume and traffic signal green times were associated with reduced speed variation. These findings can be used by engineers to minimize speed differences during the road network planning stage and continuing through the traffic management phase.  相似文献   

18.
This paper presents an analysis of motorway circulation under congested traffic conditions, with the aim of arriving at a measurement of the reliability of the motorway transport system. The author suggests a model of the speed process on a motorway lane under conditions of congestion, which was tested experimentally employing a great number of data collected on two motorways, varying considerably in terms of environmental and traffic conditions. It is shown that the relationships between the parameters of this process and the traffic density define in sufficiently complete fashion the behaviour of the motorway transport system under conditions of congestion. Using this speed process model, a simulation procedure was developed which permits calculation of the reliability of a traffic stream. Finally a method was determined for calculating the reliability in real time, which can be usefully employed in motorway traffic control.  相似文献   

19.
Driving behavior models that capture drivers’ tactical maneuvering decisions in different traffic conditions are essential to microscopic traffic simulation systems. This paper focuses on a parameter that has a great impact on road users’ aggressive overtaking maneuvers and directly affects lane-changing models (an integral part of microscopic traffic simulation models), namely, speed deviation. The objective of this research is to investigate the impacts of speed deviation in terms of performance measures (delay time, network mean speed, and travel time duration) and the number of lane-change maneuvers using the Aimsun traffic simulator. Following calibration of the model for a section of urban highway in Tehran, this paper explores the sensitivity of lane-changing maneuvers during different speed deviations by conducting two types of test. Simulation results show that, by decreasing speed deviation, the number of lane changes reduces remarkably and so network safety increases, thus reducing travel time due to an increase in network mean speed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号