首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

This paper investigates a transportation scheduling problem in large-scale construction projects under a fuzzy random environment. The problem is formulated as a fuzzy, random multi-objective bilevel optimization model where the construction company decides the transportation quantities from every source to every destination according to the criterion of minimizing total transportation cost and transportation time on the upper level, while the transportation agencies choose their transportation routes such that the total travel cost is minimized on the lower level. Specifically, we model both travel time and travel cost as triangular fuzzy random variables. Then the multi-objective bilevel adaptive particle swarm optimization algorithm is proposed to solve the model. Finally, a case study of transportation scheduling for the Shuibuya Hydropower Project in China is used as a real world example to demonstrate the practicality and efficiency of the optimization model and algorithm.  相似文献   

2.
The network design problem is usually formulated as a bi-level program, assuming the user equilibrium is attained in the lower level program. Given boundedly rational route choice behavior, the lower-level program is replaced with the boundedly rational user equilibria (BRUE). The network design problem with boundedly rational route choice behavior is understudied due to non-uniqueness of the BRUE. In this study, thus, we mainly focus on boundedly rational toll pricing (BR-TP) with affine link cost functions. The topological properties of the lower level BRUE set are first explored. As the BRUE solution is generally non-unique, urban planners cannot predict exactly which equilibrium flow pattern the transportation network will operate after a planning strategy is implemented. Due to the risk caused by uncertainty of people’s reaction, two extreme scenarios are considered: the traffic flow patterns with either the minimum system travel cost or the maximum, which is the “risk-prone” (BR-TP-RP) or the “risk-averse” (BR-TP-RA) scenario respectively. The upper level BR-TP is to find an optimal toll minimizing the total system travel cost, while the lower level is to find the best or the worst scenario. Accordingly BR-TP can be formulated as either a min –min or a min –max program. Solution existence is discussed based on the topological properties of the BRUE and algorithms are proposed. Two examples are accompanied to illustrate the proposed methodology.  相似文献   

3.
An optimization model for station locations for an on-ground rail transit line is developed using different objective functions of demand and cost as both influence the planning of a rail transit alignment. A microscopic analysis is performed to develop a rail transit alignment in a given corridor considering a many-to-one travel demand pattern. A variable demand case is considered as it replicates a realistic scenario for planning a rail transit line. A Genetic Algorithm (GA) based on a Geographical Information System (GIS) database is developed to optimize the station locations for a rail transit alignment. The first objective is to minimize the total system cost per person, which is a function of user cost, operator cost, and location cost. The second objective is to maximize the ridership or the service coverage of the rail transit alignment. The user cost per person is minimized separately as the third objective because the user cost is one of the most important decision-making factors for planning a transit system from the users’ perspective. A transit planner can make an informed decision between various alternatives based on the results obtained using different objective functions. The model is applied in a case study in the Washington, DC area. The optimal locations and sequence of stations obtained using the three objective functions are presented and a comparative study between the results obtained is shown in the paper. In future works we will develop a combinatorial optimization problem using the aforementioned objectives for the rail transit alignment planning and design problem.  相似文献   

4.
This paper presents an integrated transit-oriented travel demand modeling procedure within the framework of geographic information systems (GIS). Focusing on transit network development, this paper presents both the procedure and algorithm for automatically generating both link and line data for transit demand modeling from the conventional street network data using spatial analysis and dynamic segmentation. For this purpose, transit stop digitizing, topology and route system building, and the conversion of route and stop data into link and line data sets are performed. Using spatial analysis, such as the functionality to search arcs nearest from a given node, the nearest stops are identified along the associated links of the transit line, while the topological relation between links and line data sets can also be computed using dynamic segmentation. The advantage of this approach is that street map databases represented by a centerline can be directly used along with the existing legacy urban transportation planning systems (UTPS) type travel modeling packages and existing GIS without incurring the additional cost of purchasing a full-blown transportation GIS package. A small test network is adopted to demonstrate the process and the results. The authors anticipate that the procedure set forth in this paper will be useful to many cities and regional transit agencies in their transit demand modeling process within the integrated GIS-based computing environment.  相似文献   

5.
Dynamic user optimal simultaneous route and departure time choice (DUO-SRDTC) problems are usually formulated as variational inequality (VI) problems whose solution algorithms generally require continuous and monotone route travel cost functions to guarantee convergence. However, the monotonicity of the route travel cost functions cannot be ensured even if the route travel time functions are monotone. In contrast to traditional formulations, this paper formulates a DUO-SRDTC problem (that can have fixed or elastic demand) as a system of nonlinear equations. The system of nonlinear equations is a function of generalized origin-destination (OD) travel costs rather than route flows and includes a dynamic user optimal (DUO) route choice subproblem with perfectly elastic demand and a quadratic programming (QP) subproblem under certain assumptions. This study also proposes a solution method based on the backtracking inexact Broyden–Fletcher–Goldfarb–Shanno (BFGS) method, the extragradient algorithm, and the Frank-Wolfe algorithm. The BFGS method, the extragradient algorithm, and the Frank-Wolfe algorithm are used to solve the system of nonlinear equations, the DUO route choice subproblem, and the QP subproblem, respectively. The proposed formulation and solution method can avoid the requirement of monotonicity of the route travel cost functions to obtain a convergent solution and provide a new approach with which to solve DUO-SRDTC problems. Finally, numeric examples are used to demonstrate the performance of the proposed solution method.  相似文献   

6.
A bi-objective bi-level signal control optimization for hazardous material (hazmat) transport is considered to assess trade-offs between travel cost and environment impacts such as public risk exposure. A least maxi-sum risk model with explicit signal delay is presented to determine generalized travel cost for hazmat carriers. Since the bi-level signal control problem is generally a non-convex program, a bundle method using generalized gradients is proposed. A bounding strategy is developed to stabilize solutions of the bi-level program and reduce relative gaps between iterations. Numerical comparisons are made with other risk-averse models. The results indicate that the proposed bi-objective bi-level model becomes even amiable to signal control policy makers since provides flexible solutions whilst is acceptable to carriers since takes account of travel delay at signal-controlled junctions. Moreover, the trade-offs between public risk and generalized travel costs are empirically investigated among different risk models with a variety of weights. As a result, the proposed model consistently exhibits highly considerable advantage on mitigation of public risk whilst incurred less cost loss as compared to other alternatives.  相似文献   

7.
Abstract

This paper revisits the classical transit scheduling problem and investigates the relationship between stop spacing and headway, considering realistic wait time and operable transit capacity. Headway and stop spacing are important determinants for planning a transit system, which influence the service level as well as the cost of operation. A mathematical model is developed, and the objective function is user travel time which is minimized by the optimized stop spacing and headway, subject to the constraints of operable fleet size and route capacity. Optimal stop spacing and headway solutions are obtained in a numerical example. Sensitivity analysis is conducted, and the effect of model parameters on user travel time is explored.  相似文献   

8.
Travel planning by employers promoting more sustainable travel has delivered less car dependent behaviour for the commute in many places. Area-wide or precinct travel plans are less common but, where they exist, attempt to provide a more holistic approach through capturing synergies between employers and employees throughout a precinct. Area-based travel planning aimed at influencing employers, employees and residents are new, especially in relation to creating synergies for a single precinct that has more of an origin focus with participants travelling to diverse destinations. This paper examines various strategies that have been employed in order to achieve greener travel and to provide a self-sustaining travel planning environment. The aim of this paper is to assess the community awareness, interest and involvement with a number of green initiatives and to understand how sustainable travel planning has been absorbed by residents within a new regional centre in New South Wales, Australia. The analysis of a resident survey undertaken in 2011 distinguishes between the community awareness and their propensity to take part in each of the greener travel initiatives. The results show that a generic approach is likely to be less effective than segmenting the market so as to more directly target likely participants. Attitudes to greener travel are also highly significant and working to change them should also affect potential take up of sustainable travel initiatives. The conclusions inform the development of successful precinct based travel demand strategies both in Australia and beyond.  相似文献   

9.
It is widely acknowledged that cyclists choose their route differently to drivers of private vehicles. The route choice decision of commuter drivers is often modelled with one objective, to reduce their generalised travel cost, which is a monetary value representing the combined travel time and vehicle operating cost. Commuter cyclists, on the other hand, usually have multiple incommensurable objectives when choosing their route: the travel time and the suitability of a route. By suitability we mean non-subjective factors that characterise the suitability of a route for cycling, including safety, traffic volumes, traffic speeds, presence of bicycle lanes, whether the terrain is flat or hilly, etc. While these incommensurable objectives are difficult to be combined into a single objective, it is also important to take into account that each individual cyclist may prioritise differently between travel time and suitability when they choose a route.This paper proposes a novel model to determine the route choice set of commuter cyclists by formulating a bi-objective routing problem. The two objectives considered are travel time and suitability of a route for cycling. Rather than determining a single route for a cyclist, we determine a choice set of optimal alternative routes (efficient routes) from which a cyclist may select one according to their personal preference depending on their perception of travel time versus other route choice criteria considered in the suitability index. This method is then implemented in a case study in Auckland, New Zealand.The study provides a starting point for the trip assignment of cyclists, and with further research, the bi-objective routing model developed can be applied to create a complete travel demand forecast model for cycle trips. We also suggest the application of the developed methodology as an algorithm in an interactive route finder to suggest efficient route choices at different levels of suitability to cyclists and potential cyclists.  相似文献   

10.
This paper investigates the optimal transit fare in a simple bimodal transportation system that comprises public transport and private car. We consider two new factors: demand uncertainty and bounded rationality. With demand uncertainty, travelers are assumed to consider both the mean travel cost and travel cost variability in their mode choice decision. Under bounded rationality, travelers do not necessarily choose the travel mode of which perceived travel cost is absolutely lower than the one of the other mode. To determine the optimal transit fare, a bi‐level programming is proposed. The upper‐level objective function is to minimize the mean of total travel cost, whereas the lower‐level programming adopts the logit‐based model to describe users' mode choice behaviors. Then a heuristic algorithm based on a sensitivity analysis approach is designed to solve the bi‐level programming. Numerical examples are presented to illustrate the effect of demand uncertainty and bounded rationality on the modal share, optimal transit fare and system performance. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
User oriented transit service is designed to meet the particular needs of a selected group of travelers. Transit Routes are located to provide convenient linkages between user's origin and destination in such a way that out-of-vehicle time, such as access and transfer time, is minimized. Planning transit routes requires understanding demographics, land use and travel patterns in an area. The dynamic nature of these systems necessitates regular review and analysis to insure that the transit system continues to meet the needs of the area it serves. Geographic Information Systems (GIS) provide a flexible framework for planning and analyzing transit routes and stops. Socioeconomic, demographic, housing, land use, and traffic data may be modeled in a GIS to identify efficient and effective corridors to locate routes. Part of the route location and analysis problem requires estimating population within the service area of a route. A route's service area is defined using walking distance or travel time. The problem of identifying service areas for park and ride or auto/bus users is not considered here, but assumed analogous to walk/bus trips. This paper investigates the accuracy and costs associated with the use of different attribute data bases to perform service area analysis for transit routes using GIS. A case study is performed for Logan, Utah, where a new fixed route service is operated. The case study illustrates the use of census data, postal data, data collected from aerial photographs, and data collected during a field survey using the network area analysis technique for transit service area analysis. This comparison allows us to describe the amount of error introduced by various spatial modeling techniques of data bases representing a variety of aggregation levels.  相似文献   

12.
The effect of travel time variability (TTV) on route choice behavior is explored in this study. A stated preference survey is conducted to collect behavioral data on Shanghai drivers’ choice between a slow but stable route and a fast but unreliable route. Travel time and TTV are respectively measured by mean and standard deviation of random travel time. The generalized linear mixed model (GLMM) is applied to quantify trade-offs between travel time and TTV. The GLMM based route choice model effectively accounts for correlations among repeated observations from the same respondent, and captures heterogeneity in drivers’ values of TTV. Model estimation results show that, female drivers and drivers with rich driving experience are less likely to choose a route with high TTV; smaller expected travel time of a route increase the probability of its being chosen; all drivers have intrinsic preference for a route with smaller expected travel time, but the degree of preference may vary within the population; TTV on average has negative effects on route choice decision, but a small portion of drivers are risk-prone to choose a fast but unreliable route despite high TTV.  相似文献   

13.
This study investigates the routing aspects of battery electric vehicle (BEV) drivers and their effects on the overall traffic network performance. BEVs have unique characteristics such as range limitation, long battery recharging time, and recuperation of energy lost during the deceleration phase if equipped with regenerative braking system (RBS). In addition, the energy consumption rate per unit distance traveled is lower at moderate speed than at higher speed. This raises two interesting questions: (i) whether these characteristics of BEVs will lead to different route selection compared to conventional internal combustion engine vehicles (ICEVs), and (ii) whether such route selection implications of BEVs will affect the network performance. With the increasing market penetration of BEVs, these questions are becoming more important. This study formulates a multi-class dynamic user equilibrium (MCDUE) model to determine the equilibrium flows for mixed traffic consisting of BEVs and ICEVs. A simulation-based solution procedure is proposed for the MCDUE model. In the MCDUE model, BEVs select routes to minimize the generalized cost which includes route travel time, energy related costs and range anxiety cost, and ICEVs to minimize route travel time. Results from numerical experiments illustrate that BEV drivers select routes with lower speed to conserve and recuperate battery energy while ICEV drivers select shortest travel time routes. They also illustrate that the differences in route choice behavior of BEV and ICEV drivers can synergistically lead to reduction in total travel time and the network performance towards system optimum under certain conditions.  相似文献   

14.
Abstract

A route-based combined model of dynamic deterministic route and departure time choice and a solution method for many origin and destination pairs is proposed. The divided linear travel time model is used to calculate the link travel time and to describe the propagation of flow over time. For the calculation of route travel times, the predictive ideal route travel time concept is adopted. Solving the combined model of dynamic deterministic route and departure time choice is shown to be equivalent to solving simultaneously a system of non-linear equations. A Newton-type iterative scheme is proposed to solve this problem. The performance of the proposed solution method is demonstrated using a version of the Sioux Falls network. This shows that the proposed solution method produces good equilibrium solutions with reasonable computational cost.  相似文献   

15.
Shortest-path (minimum travel time) routing has been adopted over the past few decades. However, many studies have shown that a driver’s route and the shortest path differ widely in significant ways, and that most drivers use several criteria in selecting their routes. Since route choice criteria have been the subject of controversy, this study develops an individual behavioral-based mechanism for exploring the crucial criteria affecting drivers’ route-selection decisions. On the basis of the weight-assessing model and the habitual domain theory, this study presents the dynamic change of route choice criteria according to their dynamic weights. Furthermore, the effects of information on drivers’ route-formulating behaviors are investigated as well in order to provide some valuable suggestions for implementing Advanced Traveler Information Systems (ATIS) in the future. An empirical study in Taipei City was conducted to show the feasibility and applicability of our proposed method and the empirical results indicate excellent performance in practice.  相似文献   

16.
Travel times are generally stochastic and spatially correlated in congested road networks. However, very few existing route guidance systems (RGS) can provide reliable guidance services to aid travellers planning their trips with taking account explicitly travel time reliability constraint. This study aims to develop such a RGS with particular consideration of travellers' concern on travel time reliability in congested road networks with uncertainty. In this study, the spatially dependent reliable shortest path problem (SD‐RSPP) is formulated as a multi‐criteria shortest path‐finding problem in road networks with correlated link travel times. Three effective dominance conditions are established for links with different levels of travel time correlations. An efficient algorithm is proposed to solve SD‐RSPP by adaptively using three established dominance conditions. The complexities of road networks in reality are also explicitly considered. To demonstrate the applicability of proposed algorithm, a comprehensive case study is carried out in Hong Kong. The results of case study show that the proposed solution algorithm is robust to take account of travellers' multiple routing criteria. Computational results demonstrate that the proposed solution algorithm can determine the reliable shortest path on real‐time basis for large‐scale road networks. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
The reliability and vulnerability of critical infrastructures have attracted a lot of attention recently. In order to assess these issues quantitatively, operational measures are needed. Such measures can also be used as guidance to road administrations in their prioritisation of maintenance and repair of roads, as well as for avoiding causing unnecessary disturbances in the planning of roadwork. The concepts of link importance and site exposure are introduced. In this paper, several link importance indices and site exposure indices are derived, based on the increase in generalised travel cost when links are closed. These measures are divided into two groups: one reflecting an “equal opportunities perspective”, and the other a “social efficiency perspective”. The measures are calculated for the road network of northern Sweden. Results are collected in a GIS for visualisation, and are presented per link and municipality. In view of the recent great interest in complex networks, some topological measures of the road network are also presented.  相似文献   

18.
Reliable travel behavior data is a prerequisite for transportation planning process. In large tourism dependent cities, tourists are the most dynamic population group whose size and travel choices remain unknown to planners. Traditional travel surveys generally observe resident travel behavior and rarely target tourists. Ubiquitous uses of social media platforms in smartphones have created a tremendous opportunity to gather digital traces of tourists at a large scale. In this paper, we present a framework on how to use location-based data from social media to gather and analyze travel behavior of tourists. We have collected data of about 67,000 users from Twitter using its search interface for Florida. We first propose several filtering steps to create a reliable sample from the collected Twitter data. An ensemble classification technique is proposed to classify tourists and residents from user coordinates. The accuracy of the proposed classifier has been compared against the state-of-the-art classification methods. Finally, different clustering methods have been used to find the spatial patterns of destination choices of tourists. Promising results have been found from the output clusters as they reveal most popular tourist spots as well as some of the emerging tourist attractions in Florida. Performance of the proposed clustering techniques has been assessed using internal clustering validation indices. We have analyzed temporal patterns of tourist and resident activities to validate the classification of the users in two separate groups of tourists and residents. Proposed filtering, identification, and clustering techniques will be significantly useful for building individual-level tourist travel demand models from social media data.  相似文献   

19.
Travel time, travel time reliability and monetary cost have been empirically identified as the most important criteria influencing route choice behaviour. We concentrate on travel time and travel time reliability and review two prominent user equilibrium models incorporating these two factors. We discuss some shortcomings of these models and propose alternative bi-objective user equilibrium models that overcome the shortcomings. Finally, based on the observation that both models use standard deviation of travel time within their measure of travel time reliability, we propose a general travel time reliability bi-objective user equilibrium model. We prove that this model encompasses those discussed previously and hence forms a general framework for the study of reliability related user equilibrium. We demonstrate and validate our concepts on a small three-link example.  相似文献   

20.
With the approach of introducing the conceptions of mental account and mental budgeting into the process of travelers’ route choice, we try to identify why the usages of tolled roads are often overestimated. Assuming that every traveler sets a mental account for his/her travel to keep track of their expense and keep out-of-pocket spending under control, it addresses these questions such that “How much money can I spend on the travel?” and “What if I spend too much?”. Route tolls that exceed the budget are much more unacceptable compared to those within budget due to the non-fungibility of money between different accounts. A simple network with two nodes and two routes is analyzed firstly, the analytical solutions are obtained and the optimal road tolls supporting the user equilibrium as a system optimum are also derived. The proposed model is then extended to a generalized network. The multiclass user equilibrium conditions with travel mental budgeting are formulated into an equivalent variational inequality (VI) problem and an equivalent minimization problem. Through analyses with numerical examples, it is found that the main reason that the usages of high tolled roads are often overestimated is due to the fact that travelers with low and moderate out-of-pocket travel budget perceive a much higher travel cost than their actual cost on the high tolled roads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号