首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a combined activity/travel choice model and proposes a flow-swapping method for obtaining the model's dynamic user equilibrium solution on congested road network with queues. The activities of individuals are characterized by given temporal utility profiles. Three typical activities, which can be observed in morning peak period, namely at-home activity, non-work activity on the way from home to workplace and work-purpose activity, will be considered in the model. The former two activities always occur together with the third obligatory activity. These three activities constitute typical activity/travel patterns in time-space dimension. At the equilibrium, each combined activity/travel pattern, in terms of chosen location/route/departure time, should have identical generalized disutility (or utility) experienced actually. This equilibrium can be expressed as a discrete-time, finite-dimensional variational inequality formulation and then converted to an equivalent "zero-extreme value" minimization problem. An algorithm, which iteratively adjusts the non-work activity location, corresponding route and departure time choices to reach an extreme point of the minimization problem, is proposed. A numerical example with a capacity constrained network is used to illustrate the performance of the proposed model and solution algorithm.  相似文献   

2.
    
Abstract

A route-based combined model of dynamic deterministic route and departure time choice and a solution method for many origin and destination pairs is proposed. The divided linear travel time model is used to calculate the link travel time and to describe the propagation of flow over time. For the calculation of route travel times, the predictive ideal route travel time concept is adopted. Solving the combined model of dynamic deterministic route and departure time choice is shown to be equivalent to solving simultaneously a system of non-linear equations. A Newton-type iterative scheme is proposed to solve this problem. The performance of the proposed solution method is demonstrated using a version of the Sioux Falls network. This shows that the proposed solution method produces good equilibrium solutions with reasonable computational cost.  相似文献   

3.
    
This paper reviews and compares the performance of two dynamic transportation models – METROPOLIS and SILVESTER – which are used to predict the impacts of congestion charging for Stockholm. Both are mesoscopic dynamic models treating accumulation and dissipation of traffic queues, route choice, modal split and departure time choice. The models are calibrated independently for the baseline situation without charges and applied to forecast the effects of congestion charging. The results obtained from the two models are mutually compared and validated against the actual outcome of the Stockholm congestion charging scheme. Both models successfully predict the outcomes of the congestion charging trial at both aggregate and disaggregate levels. Results of welfare analysis, however, differ substantially due to differences in model specification.  相似文献   

4.
    
Abstract

In this paper a route-based dynamic deterministic user equilibrium assignment model is presented. Some features of the linear travel time model are first investigated and then a divided linear travel time model is proposed for the estimation of link travel time: it addresses the limitations of the linear travel time model. For the application of the proposed model to general transportation networks, this paper provides thorough investigations on the computational issues in dynamic traffic assignment with many-to-many OD pairs and presents an efficient solution procedure. The numerical calculations demonstrate that the proposed model and solution algorithm produce satisfactory solutions for a network of substantial size with many-to-many OD pairs. Comparisons of assignment results are also made to show the impacts of incorporation of different link travel time models on the assignment results.  相似文献   

5.
A multimodal, multiclass stochastic dynamic traffic assignment model was developed to evaluate pre‐trip and enroute travel information provision strategies. Three different information strategies were examined: user optimum [UO], system optimum [SO] and mixed optimum [MO]. These information provision strategies were analyzed based on the levels of traffic congestion and market penetration rate for the information equipment. Only two modes, bus and car, were used for evaluating and calculating the modal split ratio. Several scenarios were analyzed using day‐to‐day and within day dynamic models. From the results analyzed, it was found that when a traffic manager provides information for drivers using the UO strategy and drivers follow the provided information absolutely, the total travel time may increases over the case with no information. Such worsening occurs when drivers switch their routes and face traffic congestion on the alternative route. This phenomenon is the 'Braess Paradox'.  相似文献   

6.
This paper investigates the reliability of information on prevailing trip times on the links of a network as a basis for route choice decisions by individual drivers. It considers a type of information strategy in which no attempt is made by some central controller or coordinating entity to predict what the travel times on each link would be by the time it is reached by a driver that is presently at a given location. A specially modified model combining traffic simulation and path assignment capabilities is used to analyze the reliability of the real-time information supplied to the drivers. This is accomplished by comparing the supplied travel times (at the link and path levels) to the actual trip times experienced in the network after the information has been given. In addition, the quality of the decisions made by drivers on the basis of this information (under alternative path switching rules) is evaluated ex-post by comparing the actually experienced travel time (given the decision made) to the time that the driver would have experienced without the real-time information. Results of a series of simulation experiments under recurrent congestion conditions are discussed, illustrating the interactions between information reliability and user response.  相似文献   

7.
    
As part of the continuous process of improving highway safety, the engineer relies heavily on information provided by accident record systems. The study described in this paper sought to determine the reliability of this system in New Mexico. Techniques employed in the study included internal consistency checks, comparison with other record systems, and matching actual and reported crash site data. The extent of omitted and inaccurate data having primary relevance to engineering analyses was found to exceed acceptable limits. Incorrect locational information was the most serious problem. The recommended solutions to this problem consist of a modified accident report form and improved contact with enforcement officials.  相似文献   

8.
    
In densely populated and congested urban areas, the travel times in congested multi‐modal transport networks are generally varied and stochastic in practice. These stochastic travel times may be raised from day‐to‐day demand fluctuations and would affect travelers' route and mode choice behaviors according to their different expectations of on‐time arrival. In view of these, this paper presents a reliability‐based user equilibrium traffic assignment model for congested multi‐modal transport networks under demand uncertainty. The stochastic bus frequency due to the unstable travel time of bus route is explicitly considered. By the proposed model, travelers' route and mode choice behaviors are intensively explored. In addition, a stochastic state‐augmented multi‐modal transport network is adopted in this paper to effectively model probable transfers and non‐linear fare structures. A numerical example is given to illustrate the merits of the proposed model. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
    
A case study located in Auckland, New Zealand, was used to quantify the magnitude of savings that may result if the SCATS adaptive traffic control system contains an explicitly combined queue estimation and offset adjustment on a cycle‐by‐cycle basis. A validated SATURN traffic model was used to evaluate five scenarios that represent the short‐run and long‐run efficiency gains resulting from progressive signal adaption with an objective of queue minimisation on the main corridors. Optimisation was applied both area‐wide, and on selected arterial corridors, using a combined split/offset optimisation routine with responsive driver behaviour to achieve a network‐wide and corridor‐specific efficiency gain. The modelling heuristic evaluates the efficiency of both the Equisat and P0 optimisation policies that would mimic a more progressive adaption of signals under SCATS. Results for the long‐run area‐wide optimisation can produce network‐wide travel‐time savings in the order of 20% and a reduction in transient queues of 28% if only selected corridors are optimised, with a 5% reduction in journey time over an average 8‐min journey. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
In view of the serious traffic congestion during peak hours in most metropolitan areas around the world and recent improvement of information technology, there is a growing aspiration to alleviate road congestion by applications of electronic information and communication technology. Providing drivers with dynamic travel time information such as estimated journey times on major routes should help drivers to select better routes and guide them to utilise existing expressway network. This can be regarded as one possible strategy for effective traffic management. This paper aims to investigate the effects and benefits of providing dynamic travel time information to drivers via variable message signs at the expressway network. In order to assess the effects of the dynamic driver information system with making use of the variable message signs, a time-dependent traffic assignment model is proposed. A numerical example is used to illustrate the effects of the dynamic travel time information via variable message signs. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
    
Abstract

This paper investigates some features of non-linear travel time models for dynamic traffic assignment (DTA) that adopt traffic on the link as the sole determinant for the calculation of travel time and have explicit relationships between travel time and traffic on the link. Analytical proofs and numerical examples are provided to show first-in-first-out (FIFO) violation and the behaviour of decreasing outflow with increasing traffic in non-linear travel time models. It is analytically shown that any non-linear travel time model could violate FIFO in some circumstances, especially when inflow drops sharply, and some convex non-linear travel time models could show behaviour with outflow decreasing as traffic increases. It is also shown that the linear travel time model does not show these behaviours. A non-linear travel time model in general form was used for analytical proofs and several existing non-linear travel time models were adopted for numerical examples. Considering the features addressed in this study, non-linear travel time models seem to have limitations for use in DTA in practical terms and care should be taken when they are used for modelling time-varying transportation networks.  相似文献   

12.
In recent years, increasing attention has been drawn to the development of various applications of intelligent transportation systems (ITS), which are credited with the amelioration of traffic conditions in urban and regional environments. Advanced traveler information systems (ATIS) constitute an important element of ITS by providing potential travelers with information on the network's current performance both en-route and pre-trip. In order to tackle the complexity of such systems, derived from the difficulty of providing real-time estimations of current as well as forecasts of future traffic conditions, a series of models and algorithms have been initiated. This paper proposes the development of an integrated framework for real-time ATIS and presents its application on a large-scale network, that of Thessaloniki, Greece, concluding with a discussion on development and implementation challenges as well as on the advantages and limitations of such an effort.  相似文献   

13.
    
A nascent ridesharing industry is being enabled by new communication technologies and motivated by the many possible benefits, such as reduction in travel cost, pollution, and congestion. Understanding the complex relations between ridesharing and traffic congestion is a critical step in the evaluation of a ridesharing enterprise or of the convenience of regulatory policies or incentives to promote ridesharing. In this work, we propose a new traffic assignment model that explicitly represents ridesharing as a mode of transportation. The objective is to analyze how ridesharing impacts traffic congestion, how people can be motivated to participate in ridesharing, and, conversely, how congestion influences ridesharing, including ridesharing prices and the number of drivers and passengers. This model is built by combining a ridesharing market model with a classic elastic demand Wardrop traffic equilibrium model. Our computational results show that (i) the ridesharing base price influences the congestion level, (ii) within a certain price range, an increase in price may reduce the traffic congestion, and (iii) the utilization of ridesharing increases as the congestion increases. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.

This paper deals with route structures in air transportation in general and describes the derivation of such structures. Based on an extensive analysis of scheduled air traffic in Germany, an overview of the situation in domestic and international air travel is given. In particular, relationships were found which permit—in connection with a number of influencing factors—to derive from the present situation route structures, which are also valid for a future year.

This approach was used for the assignment of origin‐destination‐passenger flows to air network routes in a forecast of demand and services in commercial air transportation of the Federal Republic of Germany for the year 1995.  相似文献   

15.
    
In this study, to incorporate realistic discrete stochastic capacity distribution over a large number of sampling days or scenarios (say 30–100 days), we propose a multi-scenario based optimization model with different types of traveler knowledge in an advanced traveler information provision environment. The proposed method categorizes commuters into two classes: (1) those with access to perfect traffic information every day, and (2) those with knowledge of the expected traffic conditions (and related reliability measure) across a large number of different sampling days. Using a gap function framework or describing the mixed user equilibrium under different information availability over a long-term steady state, a nonlinear programming model is formulated to describe the route choice behavior of the perfect information (PI) and expected travel time (ETT) user classes under stochastic day-dependent travel time. Driven by a computationally efficient algorithm suitable for large-scale networks, the model was implemented in a standard optimization solver and an open-source simulation package and further applied to medium-scale networks to examine the effectiveness of dynamic traveler information under realistic stochastic capacity conditions.  相似文献   

16.
    
This paper develops an efficient probabilistic model for estimating route travel time variability, incorporating factors of time‐of‐day, inclement weather, and traffic incidents. Estimating the route travel time distribution from historical link travel time data is challenging owing to the interactions among upstream and downstream links. Upon creating conditional probability function for each link travel time, we applied Monte Carlo simulation to estimate the total travel time from origin to destination. A numerical example of three alternative routes in the City of Buffalo shows several implications. The study found that weather conditions, except for snow, incur minor impact on off‐peak and weekend travel time, whereas peak travel times suffer great variations under different weather conditions. On top of that, inclement weather exacerbates route travel time reliability, even when mean travel time increases moderately. The computation time of the proposed model is linearly correlated to the number of links in a route. Therefore, this model can be used to obtain all the origin to destination travel time distributions in an urban region. Further, this study also validates the well‐known near‐linear relation between the standard deviation of travel time per unit distance and the corresponding mean value under different weather conditions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
    
This paper presents a dynamic network‐based approach for short‐term air traffic flow prediction in en route airspace. A dynamic network characterizing both the topological structure of airspace and the dynamics of air traffic flow is developed, based on which the continuity equation in fluid mechanics is adopted to describe the continuous behaviour of the en route traffic. Building on the network‐based continuity equation, the space division concept in cell transmission model is introduced to discretize the proposed model both in space and time. The model parameters are sequentially updated based on the statistical properties of the recent radar data and the new predicting results. The proposed method is applied to a real data set from Shanghai Area Control Center for the short‐term air traffic flow prediction both at flight path and en route sector level. The analysis of the case study shows that the developed method can characterize well the dynamics of the en route traffic flow, thereby providing satisfactory prediction results with appropriate uncertainty limits. The mean relative prediction errors are less than 0.10 and 0.14, and the absolute errors fall in the range of 0 to 1 and 0 to 3 in more than 95% time intervals respectively, for the flight path and en route sector level. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
    
Abstract

Under Intelligent Transportation Systems (ITS), real-time operations of traffic management measures depend on long-term planning results, such as the origin–destination (OD) trip distribution; however, results from current planning procedures are unable to provide fundamental data for dynamic analysis. In order to capture dynamic traffic characteristics, transportation planning models should play an important role to integrate basic data with real-time traffic management and control. In this paper, a heuristic algorithm is proposed to establish the linkage between daily OD trips and dynamic traffic assignment (DTA) procedures; thus results from transportation planning projects, in terms of daily OD trips, can be extended to estimate time-dependent OD trips. Field data from Taiwan are collected and applied in the calibration and validation processes. Dynamic Network Assignment-Simulation Model for Advanced Road Telematics (DYNASMART-P), a simulation-based DTA model, is applied to generate time-dependent flows. The results from the validation process show high agreement between actual flows from vehicle detectors (VDs) and simulated flows from DYNAMSART-P.  相似文献   

19.
    
Thanks to its high dimensionality and a usually non-convex constraint set, system optimal dynamic traffic assignment remains one of the most challenging problems in transportation research. This paper identifies two fundamental properties of the problem and uses them to design an efficient solution procedure. We first show that the non-convexity of the problem can be circumvented by first solving a relaxed problem and then applying a traffic holding elimination procedure to obtain the solution(s) of the original problem. To efficiently solve the relaxed problem, we explore the relationship between the relaxed problems based on different traffic flow models (PQ, SQ, CTM) and a minimal cost flow (MCF) problem for a special space-expansion network. It is shown that all the four problem formulations produce the same minimal system cost and share one common solution which does not involve inside queues in the network. Efficient solution algorithms such as the network simplex method can be applied to solve the MCF problem and identify such an optimal traffic pattern. Numerical examples are also presented to demonstrate the efficiency of the proposed solution procedure.  相似文献   

20.
Regardless of existing types of transportation and traffic model and their applications, the essential input to these models is travel demand, which is usually described using origin–destination (OD) matrices. Due to the high cost and time required for the direct development of such matrices, they are sometimes estimated indirectly from traffic measurements recorded from the transportation network. Based on an assumed demand profile, OD estimation problems can be categorized into static or dynamic groups. Dynamic OD demand provides valuable information on the within-day fluctuation of traffic, which can be employed to analyse congestion dissipation. In addition, OD estimates are essential inputs to dynamic traffic assignment (DTA) models. This study presents a fuzzy approach to dynamic OD estimation problems. The problems are approached using a two-level model in which demand is estimated in the upper level and the lower level performs DTA via traffic simulation. Using fuzzy rules and the fuzzy C-Mean clustering approach, the proposed method treats uncertainty in historical OD demand and observed link counts. The approach employs expert knowledge to model fitted link counts and to set boundaries for the optimization problem by defining functions in the fuzzification process. The same operation is performed on the simulation outputs, and the entire process enables different types of optimization algorithm to be employed. The Box-complex method is utilized as an optimization algorithm in the implementation of the approach. Empirical case studies are performed on two networks to evaluate the validity and accuracy of the approach. The study results for a synthetic network and a real network demonstrate the robust performance of the proposed method even when using low-quality historical demand data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号