首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
This study presents a set of models that calculate carbon emissions in individual phases of flight during air cargo transportation, investigates resultant carbon footprints by aircraft type and flight route, and estimates increases in transportation costs for airlines due to carbon taxes imposed by the EU ETS. The estimated results provide useful references for airlines in aircraft assignment on different routes and in aircraft selection for new purchases. Validation of the model is conducted by simulating the potential impact of the implementation of the EU ETS on costs of air cargo transportation for six routes and six types of aircraft. Results show that the impact may be subject to various factors including unit carbon emissions per aircraft, aviation emission allowances per airline, and carbon trading prices; and that increases in costs of air cargo transportation range from 0% to 5.27% per aircraft per route. Therefore, the implementation of the EU ETS may encourage airlines to cut down their operating costs by reducing their carbon emissions, thereby ameliorating greenhouse gas pollution caused by air cargo transportation.  相似文献   

2.
Two of the ways in which air travel affects climate are the emission of carbon dioxide and the creation of high-altitude contrails. One possible impact reduction strategy is to significantly reduce the formation of contrails. This could be achieved by limiting the cruise altitude of aircraft. If implemented, this could severely constrain air space capacity, especially in parts of Europe. In addition, carbon emissions would likely be higher due to less efficient aircraft operation at lower cruise altitudes. This paper describes an analysis of these trade-offs using an air space simulation model as applied to European airspace. The model simulates the flight paths and altitudes of each aircraft and is here used to calculate emissions of carbon dioxide and changes in the journey time. For a one-day Western European traffic sample, calculations suggest annual mean CO2 emissions would increase by only 4% if cruise altitudes were restricted to prevent contrail formation. The change in journey time depended on aircraft type and route, but average changes were less than 1 min. Our analysis demonstrates that altitude restrictions on commercial aircraft could be an effective means of reducing climate change impacts, though it will be necessary to mitigate the increased controller workload conflicts that this will generate.  相似文献   

3.
It is widely known that emissions from aircraft engines, Auxiliary Power Units (APU) and ground handling equipment contribute to air pollution at airports. During the aircraft turnaround process, the main source of emissions is the APU. The use of the APU can be significantly reduced if the aircraft stand is equipped to supply external electrical power and pre-conditioned air to the cabin. This paper analyses the actual duration of APU and external power usage during intraday aircraft turnarounds at 125 airports during June 2015. The data is derived from flight data recording units of more than 200 short-haul, narrow-body jet aircraft, conducting some 25,195 aircraft turnarounds and thus provides the most detailed assessment of aircraft power usage available. A common practice is for the APU to be running for a short period on arrival at the stand (arrival-cycle) and then again for a short period prior to departure (departure-cycle). It is identified in this study that departure-cycle emissions are three times greater than arrival-cycle emissions. These emissions could be reduced if more accurate forecasts of departure times are available to flight crew. The provision of external ground power is found to reduce emissions by up to 47.6%. However, the study also highlights that when the source of external power is a diesel-fuelled mobile Ground Power Unit (GPU), there is a net doubling in emissions of hydrocarbons. APU usage is also observed to vary with outside air temperature (OAT) leading to possible increases in emissions of up to 6%.  相似文献   

4.
Passenger demand for air transportation is expected to continue growing into the future. The increase in operations will undoubtedly lead to an escalation in harmful carbon dioxide emissions, an adverse effect that governing bodies have been striving to mitigate. The International Air Transport Association has set aggressive environmental targets for the global aviation industry. This paper investigates the achievability of those targets in the US using a top-down partial equilibrium model of the aviation system complemented with a previously developed fleet turnover procedure. Three ‘enablers’ are considered: aircraft technologies, operational improvements and sustainable biofuels. To account for sources of uncertainty, Monte Carlo simulations are conducted to run a multitude of scenarios. It was found that the likelihood of meeting all targets is extremely low (0.3%) for the expected demand growth rates in the US. Results show that biofuels have the most impact on system CO2 emissions, responsible for an average 64% of the total savings by 2050 (with aircraft technologies and operational improvements responsible for 31% and 5%, respectively). However, this impact is associated with high uncertainty and very dependent on both biofuel type and availability.  相似文献   

5.
This paper studies the effect on carbon emissions of consolidation of shipments on trucks. New positioning and communication technologies, as well as decision support systems for vehicle routing, enable better utilization of vehicle capacity, reduced travel distance, and thereby carbon emission reductions. We present a novel carbon emission analysis method that determines the emission savings obtained by an individual transport provider, who receives customer orders for outbound deliveries as well as pickup orders from supply locations. The transport provider can improve vehicle utilization by performing pickups and deliveries jointly instead of using separate trucks. In our model we assume that the transport provider minimizes costs by use of a tool that calculates detailed vehicle routing plans, i.e., an assignment of each transport order to a specific vehicle in the fleet, and the sequence of customer visit for each vehicle. We compare a basic set-up, in which pickups and deliveries are segregated and performed with separate vehicles, with two consolidation set-ups where pickups and deliveries may be mixed more or less freely on a single vehicle. By allowing mixing, the average vehicle load will increase and the total driven distance will decrease. To compare carbon emissions for the three set-ups, we use a carbon assessment method that uses the distance driven and the average load factor. An increase in the load factor can reduce part of the emission savings from consolidation. We find that emission savings are relatively large in case of small vehicles and for delivery and pickup locations that are relatively far from the depot. However, if a truck visits many demand and supply locations before returning to the depot, we observe negligible carbon emission decreases or even emission increases for consolidation set-ups, meaning that in such cases investing in consolidation through joint pickups and deliveries may not be effective. The results of our study will be useful for transport users and providers, policymakers, as well as vehicle routing technology vendors.  相似文献   

6.
Global GHG emissions from air travel are currently at 3% and it could increase to 15% of the total GHG emissions by 2050. To curb the growth of GHG emissions from air travel, the U.S. Federal Aviation Administration (FAA) has created a policy to achieve carbon neutral growth by 2020 relative to the 2005 baseline. If the airline industry is to both grow and meet the objectives set by this policy, new and innovative aircraft designs, operational efficiencies, and widespread use of alternate fuels are required. To accomplish this would require large research and development investment. The federal government and state governments have passed legislations that provide tax breaks and other incentives to encourage investments in new technologies. One such tax policies is cap and trade system. This had partial success in reducing GHG emissions in certain industries but was not successful in the airline industry. This paper presents alternate methods to raise capital to invest in GHG emissions reduction projects in the airline sector. The four methodologies presented here monetizes the GHG emissions resulting from differences in load factor (ratio of number of passengers to number of seats) and GHG emissions per passenger-mile among different airlines, among different flight sectors, etc. to raise the capital. Based on 2012 air travel data, these methodologies could raise more than $300 million dollars annually to invest in GHG emissions reduction projects.  相似文献   

7.
With the increasing trend of charging for externalities and the aim of encouraging the sustainable development of the air transport industry, there is a need to evaluate the social costs of these undesirable side effects, mainly aircraft noise and engine emissions, for different airports. The aircraft noise and engine emissions social costs are calculated in monetary terms for five different sized airports, ranging from hub airports to small regional airports. The number of residences within different levels of airport noise contours and the aircraft noise classifications are the main determinants for accessing aircraft noise social costs. The environmental impacts of aircraft engine emissions include both aircraft landing and take-off and 30-minute cruise. The social costs of aircraft emissions vary by engine type and aircraft category, depending on the damage caused by different engine pollutants on the human health, vegetation, materials, aquatic ecosystem and climate. The results indicate that the relationship appears to be curvilinear between environmental costs and the traffic volume of an airport. The results and methodology of environmental cost calculation could be applied to the proposed European wide harmonised noise charges as well as the social cost benefit analysis of airports.  相似文献   

8.
The rapid growth in air traffic has resulted in increased emission and noise levels in terminal areas, which brings negative environmental impact to surrounding areas. This study aims to optimize terminal area operations by taking into account environmental constraints pertaining to emission and noise. A multi-objective terminal area resource allocation problem is formulated by employing the arrival fix allocation (AFA) problem, while minimizing aircraft holding time, emission, and noise. The NSGA-II algorithm is employed to find the optimal assignment of terminal fixes with given demand input and environmental considerations, by incorporating the continuous descent approach (CDA). A case study of the Shanghai terminal area yields the following results: (1) Compared with existing arrival fix locations and the first-come-first-serve (FCFS) strategy, the AFA reduces emissions by 19.6%, and the areas impacted by noise by 16.4%. AFA and CDA combined reduce the emissions by 28% and noise by 38.1%; (2) Flight delays caused by the imbalance of demand and supply can be reduced by 72% (AFA) and 81% (AFA and CDA) respectively, compared with the FCFS strategy. The study demonstrates the feasibility of the proposed optimization framework to reduce the environmental impact in terminal areas while improving the operational efficiency, as well as its potential to underpin sustainable air traffic management.  相似文献   

9.
道路交通是造成气候变化的主要碳排放来源之一。目前针对道路交通碳排放量测量和减排效果的定量评估方面仍然存在较大挑战。综述了道路交通碳排放测量方法,将道路交通碳减排措施分为经济、技术和行政三类,根据角色定位总结了影响交通碳排放的需求、供应和环境三方面的主要因素。发现不同测量方法得出的碳排放量差异较大,且各种方法的准确性和适用范围也存在较大差异。目前的碳减排措施目标针对性不够强,且缺乏对政策效果的定量研究。亟需在未来研究中规范道路交通碳排放量的统计口径和误差标准,明确各交通主体的减排责任,将更多研究工作集中在减排措施效果的量化上。  相似文献   

10.
To accurately investigate vehicle emissions that have become major contributors to global air pollutants and greenhouse gases, test conditions have been transferred from laboratory type approval test cycles to real-world driving conditions. In this study, the real-world driving emissions of carbon monoxide (CO), total hydrocarbons (THC), nitrogen oxides (NOx), and carbon dioxide (CO2) from one gasoline and two diesel Euro 6b light-duty passenger vehicles were investigated by a portable emission measurement system (PEMS) in Lyon, France. NOx and CO2 emission controls remain critical to addressing the real-world driving emissions of Euro 6b vehicles. Notably, the tested gasoline vehicle emitted higher CO2 emissions than diesel vehicles on all types of roads, especially on the urban road with an excess of 29.3–48.3%. The highest emission factors of gaseous pollutants generally occurred on the motorway for the gasoline vehicle, while on the urban road for diesel vehicles. In particular, for high-speed driving conditions, the gasoline vehicle gaseous emissions, especially NOx emissions, were more affected by acceleration than diesel vehicle emissions. In addition, the CO emissions, especially THC emissions, for the gasoline vehicle, were more influenced by warm-start, especially cold-start, than those for diesel vehicles.  相似文献   

11.
This paper examines the impact of traffic-flow on CO, NO2 and PM emissions at two distinct traffic junctions and evaluates the use of emission factors. The study includes three scenarios regarding pollutant emissions, which combine a field, experimental and semi-empirically estimated traffic parameters for free, interrupted and congested traffic-flow conditions. It evaluates the emission patterns for heterogeneity in traffic characteristics of both junctions. The results suggest the corrections to be made to emission factors at traffic junctions for better forecast of air quality.  相似文献   

12.
This paper examines the influence of compressed natural gas, liquefied petroleum gas and gasoline fuel on the exhaust emissions and the fuel consumption of a spark-ignition engine powered passenger car. The vehicle was driven according to the urban driving cycle and extra urban driving cycle speed profiles with the warmed-up engine. Cause and effect based analysis reveals potential for using different fuels to reduce vehicle emission and deficiencies associated with particular fuels. The highest tank to wheel efficiency and the lowest CO2 emission are observed with the natural gas fuelled vehicle, that also featured the highest total hydrocarbon emissions and high NOx emissions because of fast three way catalytic converter aging due the use of the compressed natural gas. Retrofitted liquefied petroleum gas fuel supply systems feature the greatest air-fuel ratio variations that result in the lowest TtW efficiency and in the highest NOx emissions of the liquefied gas fuelled vehicle.  相似文献   

13.
A novel methodology that provides more detailed estimates of vehicular polluting emissions is offered, in order to contribute to the improvement and the precision of emission inventories of vehicle sources through the consideration of instantaneous speed changes or acceleration instead of average vehicular speeds. This paper presents the construction and application of an instantaneous emissions model designated hereunder as “Transims’s Snapshots-Based Emissions”, which is set on a Geographic Information System that incorporates instantaneous fuel consumption factors and fuel-based emission factors to attain highest resolution of both, spatial and temporal distribution of vehicular polluting emissions based on traffic simulation through cellular automata with TRANSIMS. This work was applied to the road network of the Mexico City Metropolitan Area as case study. The development of this powerful tool led to obtaining 86,400 maps of the spatial and temporal distribution of vehicular emissions per vehicle circulating on the road network, including the following pollutants: carbon monoxide and carbon dioxide, nitrogen oxides, total hydrocarbons, sulfur oxides, polycyclic aromatic hydrocarbons, black carbon, particles PM10 and PM2.5. The said maps allowed identification with highest level of detail, of the emissions and Hot-spots of fuel consumption. Also, the model permitted to obtain the emissions’ longitudinal profiles of a given vehicle along its route. This study shows that the integration method of the polynomial regression models represents an opportunity for each city to develop more easily and openly its own regional emissions models without requiring deeper programming knowledge.  相似文献   

14.
This study presents the characteristics of real world, real time, on-road vehicular exhaust emission namely, carbon monoxide (CO), nitric oxide (NO), hydrocarbons (HC), and carbon dioxide (CO2) emitted under heterogeneous traffic conditions. Field experiments were performed on major category of vehicles in developing countries, i.e. two-wheelers, auto-rickshaws, cars and buses. The on-board monitoring was carried out on different corridors with varying road geometry. Results revealed that the driving cycle was dependent on the road geometry, with two lane mixed flow corridor having lot of short term events compared to that of arterial road. Vehicular emissions during idling and cruising were generally low compared to emissions during acceleration. It was also found that emissions were significantly dependent on short term events such as rapid acceleration and braking during a trip. Also, the standard emission models like COPERT and CMEM under predicted the real world emissions by 30–200% depending upon different driving modes. The on-road emissions measurements were able to capture the emission characteristics during the micro events of real world driving scenarios which were not represented by standard vehicle emission measured at laboratory conditions.  相似文献   

15.
On-board real-time emission experiments were conducted on 78 light-duty vehicles in Bogota. Direct emissions of carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx) and hydrocarbons (HC) were measured. The relationship between such emissions and vehicle specific power (VSP) was established. The experimental matrix included both gasoline-powered and retrofit dual fuel (gasoline–natural gas) vehicles. The results confirm that VSP is an appropriate metric to obtain correlations between driving patterns and air pollutant emissions. Ninety-five percent of the time vehicles in Bogota operate in a VSP between −15.2 and 17.7 kW ton−1, and 50% of the time they operate between −2.9 and 1.2 kW ton−1, representing low engine-load and near-idling conditions, respectively. When engines are subjected to higher loads, pollutant emissions increase significantly. This demonstrates the relevance of reviewing smog check programs and command-and-control measures in Latin America, which are widely based on static (i.e., idling) emissions testing. The effect of different driving patterns on the city’s emissions inventory was determined using VSP and numerical simulations. For example, improving vehicle flow and reducing sudden and frequent accelerations could curb annual emissions in Bogota by up to 12% for CO2, 13% for CO and HC, and 24% for NOx. This also represents possible fuel consumption savings of between 35 and 85 million gallons per year and total potential economic benefits of up to 1400 million dollars per year.  相似文献   

16.
One of the main causes of mortality worldwide is air pollution. To tackle this problem, local, regional and national governments have implemented policies to reduce emissions from industrial and on-road sources. However, when these policies are being designed, shipping emissions are often overlooked. There has been a drastic increase in the demand for cruises and its economic relevance is also growing in port-cities. Barcelona is Europe’s leading cruise port, and it is located near the centre of the city. In this context, this paper analyses the impact of cruise ships in the air quality of the entire city of Barcelona using a dataset with information about pollutants and the number of cruises arriving to the port. We show that there is a direct impact between cruises staying at the port and city pollution. Additionally, the size and age of the cruise also affect air quality. The larger (or newer) the cruise is, the higher the emission generated. Moreover, our simulations show that the whole city is affected by these emissions.  相似文献   

17.
A statistical analysis has been developed from the ICAO databank to predict aero-engines exhaust emissions during a landing and take-off cycle (LTO). The ICAO databank contains updated emission indices for a vast number of turbojet and turbofan engines only, with thrust ratings greater than 26.7 kN. Correlations are developed and proposed for turboprop and turboshaft engines to overcome the difficulty of assessing exhaust emissions from these engines in absence of industry data. LTO emissions are predicted for a turbofan-powered commuter airplane (Embraer E195) using the surrogate model. It is demonstrated that the predictions are closer to the values extracted from the flight data recorder than to the emissions calculated with the ICAO method. Thus, approximate emissions indices applied to actual flight procedures are a better choice than a standard ICAO LTO emission estimate from the databank. The correlations are then applied to the prediction of LTO emissions of a turboprop airplane (Bombardier Q400).  相似文献   

18.
Increasingly strict emissions standards are providing a major impetus to vehicle manufactures for developing advanced powertrain and after-treatment systems that can significantly reduce real driving emissions. The knowledge of the gaseous emissions from diesel engines under steady-state operation and under transient operation provides substantial information to analyze real driving emissions of diesel vehicles. While there are noteworthy advances in the assessment of road vehicle emissions from real driving and laboratory measurements, detailed information on real driving gaseous emissions are required in order to predict effectively the real-time gaseous emissions from a diesel vehicle under realistic driving conditions. In this work, experiments were performed to characterize the behavior of NOx, unburned HC, CO, and CO2 emitted from light-duty diesel vehicles that comply with Euro 6 emissions standards. The driving route fully reflected various real-world driving conditions such as urban, rural, and highway. The real-time emission measurements were conducted with a Portable Emissions Measurement System (PEMS) including a Global Positioning System (GPS). To investigate the gaseous emission characteristics, authors determined the road load coefficients of vehicle specific power (VSP) and regression coefficient between fuel use rate and VSP. Furthermore, this work revealed the correlation between the rates of average fuel use and each gaseous emission.  相似文献   

19.
Tourism is a noticeable contributor to global greenhouse gas (GHG) emissions. Existing estimates of tourism’s carbon footprint are however incomplete as they fail to holistically assess the additional, ‘indirect’ carbon requirements. These arise from the non-use phases of a tourism product or service life cycle and can be further magnified by supply chain industries. Under-development of methods for carbon impact assessment in tourism is the primary reason for the omission of ‘indirect’ GHG emissions. This study develops a new approach for comprehensive appraisal of GHG emissions which incorporates and advances the methodological advantages of existing assessment techniques. It tests the applicability of this approach in tourism by conducting a holistic analysis of a standard holiday package to Portugal, based on the British tourism market. The new approach demonstrates the significance of the ‘indirect’ GHG emissions in the total carbon footprint from the holiday package, thus emphasising the necessity for more comprehensive future assessments.  相似文献   

20.
In this paper, typical flight paths, fuel burn and carbon dioxide (CO2) emissions are computed using a rich data set and two estimation approaches: (i) a clustering and landmark registration technique and (ii) a method based on the EUROCONTROL’s Base of Aircraft Data (BADA) performance model. Clustering is employed to extract flight characteristics and organize altitude profiles accordingly. Our flight path and CO2 emissions analysis focuses on the Climb-Cruise-Descent (CCD) cycle, since different operational conditions during the Landing and Take-off cycle may result in significant deviations in terms of fuel burn and CO2 emissions and different modeling assumptions and approaches should be adopted. The key features of the CCD cycle are the flight distance, the aircraft type and the flight direction. Path segmentation and landmark registration are employed for path representation and smoothening of discontinuities. The paths estimated by the above method are compared to those obtained by the point mass BADA model. Noticeable deviations in the resulting estimates of the operational characteristics are found. Higher deviations in prediction errors are found in the climb and descent duration and the rate of climb and descent. The typical altitude profiles obtained by the two methods are used to determine fuel burn and CO2 emissions. The difference in the resulting estimates are less stark; on a fleet-wide level the fuel burn of the relevant typical profiles differ by 7%. Emission maps of the U.S. airspace enabling the identification of critical emission spots including routes, airports, seasons and aircraft type are constructed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号