首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 718 毫秒
1.
刘霞 《路基工程》2018,(1):42-46
针对路堤荷载作用下上覆硬壳层的软土地基的破坏模式,依托某沿海高速公路工程,基于大型通用有限元分析软件ABAQUS,对软土硬壳层地基路堤的分层填筑过程进行了数值分析。研究了硬壳层软土地基在路堤荷载作用下塑性区开展的过程及土中应力、应变特性,总结分析了其破坏模式。  相似文献   

2.
根据Boussinnesq应力公式和Mohr-Coulomb破坏准则,导出天然软土地基上路堤临界高度的计算式。考虑地表硬壳层对路堤荷载的扩散作用,分析硬壳层厚度和刚度对路堤临界高度的影响。导出的路堤临界高度计算式在特殊条件下可简化为巴布科夫公式和Fenenius公式。  相似文献   

3.
高路堤下软土硬壳层工程性质的研究   总被引:3,自引:0,他引:3  
张留俊 《公路》1999,(7):5-9
软土层之上的硬壳层对软基路堤的沉降与稳定有着重要的影响,硬壳层有利于路堤的稳定,也能起到扩散应力减小沉降的作用。本文结合试验工程的观测成果,对高路堤下的厚硬壳怪的特性作探讨 。  相似文献   

4.
硬壳层作为软土地基上的一层特殊"保护层",对软土地基起着应力扩散的作用,在考虑硬壳层效应的情况下,通过试验段的现场试验和理论分析,对滨海地区高速公路软土硬壳层工程特性及处理技术进行分析与评价,确定了天然双层软土地基上路堤临界高度.  相似文献   

5.
双向土工格栅处理桥头跳车研究   总被引:1,自引:0,他引:1  
用有限元法对利用双向土工格栅加筋桥头路堤,从而控制桥头跳车的问题进行研究。分析加筋层间距对桥头路堤的沉降、竖向附加应力分布、土工格栅的拉应力和拉应变的影响规律。结果表明,以合理的方案对桥头路堤作加筋处理,可以有效控制桥头路堤的沉降,并使得桥台与路堤间的沉降能平顺过渡,为控制桥头跳车创造了有利条件。  相似文献   

6.
本文阐述了软土地基硬壳层作用机理及如何正确利用硬壳层,以提高施工的技术经济效益。硬壳层对下卧软土地层中的应力分布有扩散作用,硬层与软层间的摩擦力影响土中应力分布,造成界面处应力集中。其扩散作用影响软土层沉降,应力扩散作用当填土超过极限高度时无作用,用超载预压的方法可加速地基的沉降,但硬壳层变形不失去对路基的稳定作用。  相似文献   

7.
软土地基上硬壳层效应分析及其工程应用   总被引:3,自引:0,他引:3  
分析了外加荷载(如路堤)作用下软土地基上硬壳层的工程效应包括壳体效应、封闭作用以及对沉降的滞后作用。针对硬壳层上述的工程效应,讨论了硬壳层在工程应用中应该注意的问题。  相似文献   

8.
付明 《路基工程》2021,(1):139-144
依托杭黄铁路某段路堤,运用ANSYS软件对路堤支档设计中4种不同工况下h型桩桩体7个不同位置的应力应变随荷载变化进行了分析.通过静力分析可知:结构的应力、应变主要由结构自重引起,轨道和列车荷载引起的应力、应变相对较小,对结构的强度和稳定性影响很小.通过动力分析可知:不同列车速度下,h型桩产生的位移和加速度均较小,对h型...  相似文献   

9.
上覆硬壳层缺失的深厚软土地基中基桩由于侧向约束薄弱和受压杆稳定影响存在失稳风险。桩帽连梁结构增加了地基承载力和稳定性,已逐步应用于实际工程中,但目前对于桩帽连梁支撑式路堤荷载传递机理和土拱效应相关的研究较少。通过ABAQUS大型有限元计算软件建立不同填土高度下桩帽连梁支撑式路堤三维简化模型,对桩帽连梁支撑式路堤的沉降变形特性、应力分布规律以及荷载传递机理等进行分析。结果表明,高填路堤桩帽顶、地梁顶以及桩间土顶之间的填土均存在差异沉降,桩间土与桩帽地梁之间以及地梁与桩帽之间均会形成土拱,最终填土荷载主要由桩帽承担。路堤填土竖向应力沿深度存在峰值点,峰值点以上的路堤应力分布与填土自重规律基本一致,峰值点以下的路堤应力沿深度递减,且峰值点高度略低于实际的等沉面高度。  相似文献   

10.
王蕾  殷伟  张冬 《中外公路》2011,31(2):70-74
为了研究影响长寿命沥青路面结构设计的关键因素,选取了路面结构设计所需的5种参数,分为4个水平,并采用正交计算方法,利用BISAR3.0程序对不同因素、不同水平下的路面结构内部拉应变、拉应力和基顶压应变进行分析.结果显示:对面层、基层拉应变和基层拉应力影响最显著的因素是基层模量;而对土基顶面竖向压应变影响最显著的因素是面...  相似文献   

11.
泡沫轻质土是近几年广泛应用于高速公路路堤填筑等方面的一种新型轻质材料。考虑到泡沫轻质土路堤填料与传统路堤填料之间较大的差异性,结合广佛江一期试验段现场监测资料,采用数值分析方法对不同弹性模量下泡沫轻质土路堤底部基底压力分布特征进行了研究。结果表明:随着泡沫轻质土路基浇筑高度及弹性模量的增加,基底压应力分布不均匀性逐渐增加,所受拉应力及弯矩也逐渐增大;地基底面最大沉降及差异沉降量随着路基弹性模量增大逐渐减小,趋向于整体下沉。  相似文献   

12.
基于正弦函数变化的路面不平度和两自由度的四分之一车辆模型,推导出车辆随机动荷载计算公式,研究路面不平度对车辆荷载作用下低路堤动力响应的影响规律。建立车-路耦合三维动力有限元模型,计算分析6种工况下不同路面不平度时车辆随机动荷载作用下低路堤的动应力,得出低路堤动应力均随路面不平度值的增加而增大,且与车辆附加动荷载系数m近似为线性关系;提出不同路面不平度时车辆随机动荷载作用下低路堤动应力计算模型,并对比有限元模型得到的低路堤动应力与应力计算模型得到的低路堤动应力。  相似文献   

13.
高填土路堤预抛高分析计算   总被引:1,自引:0,他引:1  
通过分析碾压机械压实过程中产生的附加应力,确定了分层碾压土体所具有的前期固结应力;通过土水特征曲线试验和渗透试验,按照渗透系数折减的方法确定了非饱和土的固结系数,按照饱和土的一维固结理论近似计算了非饱和土的固结过程;按照自重应力大于前期固结应力的原则计算填土路堤的再压缩沉降,结合固结计算的结果估计了高填土路堤的后期沉降,提出了不同填土高度、使用不同碾压机械的高填方路堤的预抛高。  相似文献   

14.
加筋土陡边坡受力测试分析   总被引:1,自引:0,他引:1       下载免费PDF全文
曾长贤 《路基工程》2010,(3):198-200
在系统调研加筋土陡边坡路堤研究应用的基础上,结合赣龙铁路加筋土陡边坡典型工程,开展了水平土压力、竖直土压力、土工格栅拉筋应变以及坡面水平变形等项目的现场测试,研究了加筋土陡边坡的受力特征、作用机理,验证了设计方法,测试结果及多年运营表明:加筋土陡边坡设计合理,能满足路堤稳定和变形的要求。  相似文献   

15.
行车荷载和填筑高度对粉性土路堤变形的影响   总被引:3,自引:0,他引:3  
不同行车荷载、不同填筑高度下的变形应力有限元分析表明:超限车辆引起粉性土路堤的过大变形是导致半刚性沥青路面结构疲劳开裂的重要因素;路堤填筑高度>8m,随路堤高度增加,路堤内的应力、应变急剧增大,路基的变形远超过路基的容许弯沉。提高压实标准,路堤内应力几乎没变化,但对减少竖向变形的作用随填筑高度增加而逐渐增大。葡氏重型不同压实度标准的压缩、回弹模量表明,提高粉土路基的压实度,特别是90%、93%区的压实度能有效地降低路基的孔隙比及变形,改善路面结构的疲劳拉应力状况。  相似文献   

16.
为真实反映加筋桩承式路堤的土拱效应,采用三维球形土拱假设,建立了一种路堤荷载和均布荷载共同作用下的土拱效应分析方法。基于Hewlett土拱分析方法推导了无加筋体时路堤荷载和均布荷载作用下的桩土荷载分担表达式;对于加筋桩承式路堤,依据桩帽顶部加筋体沉降的特征,将加筋桩承式路堤分为2个部分,采用不同的沉降假设分别建立其竖向平衡方程,求得桩帽顶面和桩间土表面对加筋体的支撑力;通过离心模型试验和现场实测结果进行对比验证,采用参数分析法对影响土拱效应的主要因素进行等级评价。结果表明:加筋体抗拉强度对桩土应力比以及加筋体拉力均具有很高的影响等级,研究结果能够为分区域铺设加筋体提供理论依据。  相似文献   

17.
选取宁杭高铁德清站路基填料站现场典型粗粒土填料制备试样,在100,150,200,300 kPa围压下开展大型三轴固结排水剪切试验,得到相应的应力-应变和体变特性曲线.试验表明:围压越大,偏应力达到稳定值所需的轴向应变越大,当围压为300 kPa、轴向应变达到15%时,偏应力仍在继续增长.不同围压条件下的试样剪切初期均...  相似文献   

18.
王超 《路基工程》2019,(6):128-133
针对CFG桩加固铁路软弱地基的效果和变形特性,运用Midas数值分析软件建立二维全断面双线路基模型,分别对施工期地基加固前和加固后6种工况下的竖向位移进行计算。以地基沉降值、路堤沉降值和工后沉降值作为分析指标,说明了CFG桩加固软弱地基的优越性。由于梯形路基附加应力分布不同,沿路基宽度方向地基表面沉降呈“中心大两边小”的不均匀现象。地基压缩层和路堤填料层是地基加固前路基结构的变形关键区,路堤填料层是地基加固后路基结构的变形关键区。桩土之间由于力的分配不平衡存在差异沉降,桩-砂石垫层之间存在最大剪切应变。  相似文献   

19.
为了解决粉质土低路堤设计中的相关问题,通过室内模型试验,对南通地区的粉质土不同初始含水率、不同压实度条件下进行了毛细水上升高度及含水率分布情况的试验研究,确定了粉质土低路堤中毛细水作用的影响范围,为低路堤的设计提供一定的依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号