共查询到14条相似文献,搜索用时 0 毫秒
1.
The cross sea channel for the Qiongzhou Strait not only provides a solution for transportation, but also plays an important role in the political and economic development of the region. In addition, the project has an extensive impact on many fields, such as energy, national defense, science and technology, opening up and reform, comprehensive utilization and so on. It is a significant project to enhance China′s comprehensive national strength, defend the country′s territorial integrity and promote regional economic development. The geological conditions across the Qiongzhou Strait are complex. A large amount of existing engineering geological information and hydrogeological data are collected, based on which the seismic impact on subsea tunnels and the main geological conditions including tectonic structures are analyzed. Different options crossing the Qiongzhou Strait have been considered and compared in terms of engineering geology, environmental condition, as well as the construction feasibility. The analystical results indicate that a subsea tunnel has more advantages over a bridge. Because more complicated technical difficulties have to be solved for a highway tunnel which would potentially increase construction and operation costs, a railway tunnel scheme is recommended. Vehicles can be carried by trains through the Qiongzhou Strait railway tunnel. Based on the seabed topography and geological conditions, four preliminary railway tunnel routes are proposed. After a comprehensive comparative analysis, the railway tunnel route Ⅱ is identified to be superior to other alternatives and should be the basis for determining the final tunnel layout. The proposed tunnel cross section includes two railway tunnels and one service tunnel. All the three tunnels have the same structural form and dimension and will be constructed by shield. 相似文献
2.
Challenges and Countermeasures in Construction of Gaoligongshan Tunnel of Dali Ruili Railway(大瑞铁路高黎贡山隧道施工挑战与对策) 下载免费PDF全文
In order to resolve the challenges encountered in the construction of Gaoligongshan Tunnel such as soft rock deformation of inclined shafts, water drainage and protection of vertical shafts, TBM jam in crossing areas with adverse geology, solutions and key construction techniques are developed through theoretical analysis, field test, scheme optimization and staged review and summary. The performance results of field practice show that: (1)the goal of no damages and no replacement of the primary support can be achieved by adopting the comprehensive deformation prevention technique of "ring support early formation and quick closure", setting of proper excavation line curvature, and reinforcing of support; (2)the risk of vertical shaft flooding during construction in water rich weak granite can be greatly reduced by adopting the water control principle of "exploration for any excavation, plugging as the main method, and supplemented with drainage method" and the key pre grouting technique of S shaped deep boreholes; (3)the open type TBM can quickly and safely pass through the unfavorable mylonitic granite stratum by adopting the small pilot tunnel construction method, thus the fast and high efficiency construction performance of TBM can be fully utilized. 相似文献
3.
HONG Kairong 《隧道建设》2019,39(5):710-723
The author gives an overview of the development of tunnels and underground engineering in China in the past two years, including railway tunnel, high speed railway tunnel, highway tunnel, metro tunnel, hydraulic tunnel and utility tunnel, and introduces some key and representative railway, highway and municipal tunnels projects, i.e. Muzhailing Tunnel on Lanzhou Chongqing Railway, Dangjinshan Tunnel on Dunhuang Golmud Railway, immersed tunnel of Hong Kong Zhuhai Macao Bridge, China Laos Railway Tunnel, Gaoligongshan Tunnel on Dali Ruili Railway, Yuelongmen Tunnel on Chengdu Lanzhou Railway, Tianshan Shengli Tunnel on Urumchi Yuli County High speed Railway, Shenzhen Zhongshan Passage, Su′ai Tunnel in Shantou, Ka Shuang Tunnel of Ertix River Water Diversion Project, Qianhai underground integrated hub in Shenzhen and underground integrated structure of Optics Valley Square in Wuhan. The author also introduces the development and progress in the fields of engineering investigation technology, BIM technology, mechanized and intelligent tunnel construction technology, shield/TBM manufacturing and remanufacturing technology, offshore immersed tube tunnel construction technology, non circular shield tunnel construction technology, tunnel big data platform construction technology, etc. According to the operation of series national strategies and planning such as Sichuan Tibet Railway, coordinated development of Beijing, Tianjin and Hebei, the Yangtze Economic belt, and the Guangdong Hong Kong Macao Greater Bay Area, following technical demands are proposed, namely, sea crossing tunnels, construction of complex and long distance tunnels, environmental protection technology for tunnel construction in ecologically vulnerable areas, development of large scale urban underground complexes, research and development of new materials in alpine environment, intelligent diagnosis of tunnel diseases and rapid repairs, intelligent disaster prevention of ultra long complicated tunnels and underground engineering, etc. Some thoughts and suggestions are put forward in two aspects of engineering construction management mode and mechanization supporting in combination with the development status of the industry. 相似文献
4.
Lanzhou Chongqing Railway is located in the uplift margin of the Tibetan Plateau, where the geological environment is very complicated and special. Based on numerical analysis and field tests, the physical and mechanical properties, micro structure, and complicated water related stability of the Tertiary sandstone are studied. A comprehensive dewatering system integrating deep surface wells and vacuum light well points in tunnel is used and the construction technique featured with advance reinforcement by horizontal jet grouting for the full face of aquiferous silty fine sand tunnels is invented to solve the problem of the Tertiary quick sand. In addition, the classification method for deformation potentiality in design and dynamic adjustment in construction of tunnels in high geostress soft rock is established, the deformation control technology combining active stress release and passive control according to the deformation mechanism is developed, an automatic real time monitoring system for operation is invented, and a complete technological system of design, construction, and operation management of soft rock tunnels is built. Moreover, the TBM equipment parameter design principles are put forward, the parallel lining and multi stage belt conveyor mucking system is researched, the phased ventilation technology is invented and thus the problem of safe and fast long distance construction by large diameter TBMs is solved. The technological achievements have filled in gaps and facilitated development of the tunnel construction technology. 相似文献
5.
A sea crossing tunnel is generally large in scale, having a complex site environment, and lack of engineering experience. The success of the project is directly related to the design plan. At present, no metro sea crossing tunnel havd been built in mainland, and the design standard and technology of the sea crossing tunnel are not studied throughly. The key technology of long and large sea crossing metro tunnel design, including construction method selection, cross section design, waterproofing and drainage system design, response to complex environment in sea area, durability design, ventilation and evacuation are analyzd with methods of geological analysis, engineering analogy and comprehensive comparison based on the sea crossing tunnel of Xiamen Rail Transit Line 3. A combination of shield and mining methods is proposed for the geological conditions of different sections. The drainage system of the mining section can be maintained by applying advanced grouting to control displacement. The complex geology of the sea area is considered in the targeted design, including a deep weathering trough, a water rich sand layer, a hard rock and uneven stratum, and the development of solitary rocks. The durability design of the tunnel structure and the limit of the bearing capacity are treated equally to consider safety reserve. The tunnel adopts sectioned longitudinal ventilation and smoke extraction mode, and contains ventilation shafts and civil smoke extraction air shafts on shore to prevent disasters. The conclusions can provide technical support for tunnel scheme decision and reference for similar projects. 相似文献
6.
Study of Design and Construction Technology of Ultra large span Tunnel at Badaling Great Wall Station(八达岭长城站超大跨度隧道设计施工技术研究) 总被引:1,自引:0,他引:1
The large span transition section at Badaling Great Wall Station with a maximum excavation span of 32.7 m and an excavation area of 494.4 m2 is the traffic tunnel with the largest excavation span and excavation section area in the world, resulting in substantial construction difficulty and high safety risk. To ensure the construction safety of Badaling Great Wall Station, the support parameter design, a new excavation method, and the surrounding rock deformation control principle for tunnels with an ultra large section are studied. The study results show that: (1) According to the checking calculation, the support system had a safety factor of 1.16-2.46 during the construction period and 1.59-3.54 during the operation period, i.e., its engineering structure is safe and reliable. (2) The innovative triangle type excavation applied to the tunnel with an ultra large span and section has the advantages of a simple and clear method, safe and reliable structure, high applicability of mechanical equipment and high construction efficiency. (3) Depending on different surrounding rock classes and spans, the criteria for total deformation control of the large span transition section at Badaling Great Wall Station are as follows: in the case of class Ⅱ surrounding rock, the total settlement is 20-30 mm, and the total horizontal convergence is 15-20 mm; in the case of class Ⅲ surrounding rock, the total settlement is 30-40 mm, and the total horizontal convergence is 20-25 mm; in the case of class Ⅳ surrounding rock, the total settlement is 60-90 mm, and the total horizontal convergence is 40-55 mm; in the case of class Ⅴ surrounding rock, the total settlement is 130-190 mm, and the total horizontal convergence is 90-105 mm. (4) According to the numerical simulation, the innovative triangle type excavation method results in deformation that is mainly centralized in the tunnel arch making stage, accounting for approximately 95% of the total, followed by deformation in the side making stage, accounting for 4% of the total, with the smallest deformation only accounting for 1% in the inverted arch making stage. 相似文献
7.
With reference to the construction conditions and features of metro tunnels, the design features of double shield TBMs are analyzed and key issues to be considered and settled when a double shield TBMs is used for metro tunnel construction are proposed. The issues include cutterhead′s rock breaking capacity, small curve excavation, selection of backfill grouting technology and jamming prevention and release function in fault and fracture zone, etc., which all have a direct effect on the geological adaptability, tunnel lining quality and tunneling performance of double shield TBMs. Subsequently, the specific design and optimization scheme, which includes the design of cutterhead thick steel plates, tapered shield, monorail hoist and pea gravel backfill and cement slurry grouting, etc., are studied. The success of double shield TBMs in Shenzhen Metro project well proved its remarkable geological adaptability and advantages in efficient mechanized construction. 相似文献
8.
In order to deal with the technical problems of Shuangfeng Tunnel passing through water rich Tertiary sandy mudstone strata with long distance and big overburden, such as dewatering, advance reinforcement, structural design and construction method etc., reducing tunnel deformation, preventing water inrush, gushing mud and tunnel collapse, the technical route of "stereo exploration, pressure reduction by water releasing, pre grouting, supporting timely, overall monitoring" is established after the field test and data analysis. Methods of full dimensional exploration and water pressure reducing are proposed, which form the preceding reinforcing technology that are different between inside the excavation contour and outside the excavation contour. Support linings are constructed immediately after excavation of upper bench. Safety performance of tunnel structure is evaluated according to the monitoring results. The research is conducted based on Shuangfeng Tunnel and the study results are applied in the construction of the tunnel. Results indicate that it can make sense to control deformation and ensure safety by using methods of reducing pressure through full dimensional water release, adopting advance reinforcement measures that are different between inside the excavation contour and outside the excavation contour, proposing mini bench method during tunnel construction and supporting timely after excavation for tunnels passing through water rich Tertiary sandy mudstone strata. 相似文献
9.
LI Zhipeng 《隧道建设》2019,39(9):1486-1493
In order to select a suitable ventilation scheme for a single tube extra long highway tunnel with two way traffic, as well as to solve problems in smoke exhaust and personnel evacuation in such tunnel, 3 ventilation schemes are proposed. According to the characteristics of Zhagaliang extra long highway tunnel, the 3 ventilation schemes include confluent ventilation with exhaust shaft and longitudinal ventilation with jet fans, parallel pilot tunnel forced ventilation network, and longitudinal ventilation with jet fans and sectional smoke exhaust by inclined shaft. The ventilation schemes are compared from several aspects, i.e. civil construction cost, initial investment of mechanical and electrical equipment, electricity cost during tunnel operation, ventilation control, stability of ventilation network, applicability, management and maintenance. Finally, the most suitable ventilation scheme is selected by comparing the advantages and disadvantages of each scheme, i.e. longitudinal ventilation with jet fans and sectional smoke exhaust by inclined shaft. Under the normal operation condition of the tunnel, longitudinal ventilation with jet fans is adopted in the main tunnel, and on demand ventilation can be realized. Smoke can be exhausted by inclined shaft in case of fire, which can solve the problem of smoke exhaust only in two sections by the parallel pilot tunnel. The parallel pilot tunnel can also be used for personnel evacuation and rescue. 相似文献
10.
In this paper, the application status of foundation trench excavation and navigation channel dredging, dry dock construction, element precasting, element transport, element mooring, element immersion, joint treatment and foundation treatment of several typical immersed tunnels in China are introduced. And then the Honggu Immersed Tunnel in Nanchang and subsea tunnel of island tunnel project of Hong Kong Zhuhai Macao Bridge are taken as examples; and some innovations of key technologies, i.e. key construction technology, element transport and immersed technology, differential settlement control technology for element immersion, subsea connection technology, and subsea space development and subsea harbor construction technology, are summarized for river crossing and sea crossing immersed tunnels. Finally, the development trends of immersed tunnels are prospected based on new technologies and equipments from the aspects of prolongation of immersed tunnel, field breakthrough, urban construction promoting and traffic demand adding of cities along rivers and seas. The results can provide reference for construction and popularization of immersed tunnels. 相似文献
11.
State of art and Prospectives of Urban Utility Tunnels in China(我国城市综合管廊建设发展现状与未来发展趋势) 总被引:2,自引:0,他引:2
YOU Xinhua 《隧道建设》2018,38(10):1603-1611
Based on the introduction of the history and typical projects, the state of art of urban utility tunnels in China are mainly discussed in terms of construction mode, planning and design, construction and operation management. Then the significant technologies used for utility tunnels in China such as the green construction concept, intensive planning/design concept, intensive planning/design method, formwork slipping technology, precast/assembly technology and BIM based intelligent management technology and so on are elaborated. Finally, prospectives of utility tunnels in China are presented. 相似文献
12.
WANG Zhijian 《隧道建设》2018,38(3):339-351
To ensure the safe, rapid and high quality construction of Zhengzhou Wanzhou High speed Railway, a series of exploration and innovation of construction technology, structural design and information management under the condition of large scale mechanization is used in the whole construction process. The technology includes: (1)A set of advanced geological prediction, advanced pre reinforcement technology of excavation face, mechanized construction technology of primary support, wide waterproof board trolley operation technology and intelligentized full face lining trolley of large scale mechanized construction technology are formed. (2)A classification method of surrounding rock stability is established based on the mechanized construction technology, and the design parameters of the tunnel support structure are optimized under the guidance of New Austria Tunneling Method. (3)To realize informatized management of tunnel construction, the tunnel construction management system, construction information record system, construction safety management system, quality management system of concrete mixing station and quality credit evaluation system are established. Finally, on the basis of mechanized and informatized construction, exploration and outlook of the tunnel intelligentized construction technology are given from the aspects of the dynamic intelligentized design system of tunnel support system, the intelligentized robot construction technology of tunnel support system and the intelligentized monitoring system of tunnel structure, to promote China′s tunnel construction technology. 相似文献
13.
In order to guarantee the stability of surrounding rock and support structure of super large span tunnel and realize quantification of support structure design, the optimal excavation contour line shape is obtained based on study of influence of initial ground stress on bearing arch of surrounding rock; a new quantitative design method, in which the surrounding rock is regarded as an arch structure, bolts, cables, shotcrete and lining are designed to satisfy the intensity, rigidity and stability of the arch structure, is presented to design the support structure system. The method has been successfully applied to super large span tunnel of Badaling Great Wall Station on Beijing Zhangjiajie High speed Railway; and the applicable results show that the maximum accumulative settlement of crown top of large span section is only 17.3 mm, and the relative subsidence of crown top is only 0.09%, which can meet safety requirements. 相似文献
14.
The improvement in the operation speed of the transportation project means the progress and development of the construction technologies in transportation projects. In this paper, the following factors restricting the further improving of the speed of high speed railway are analyzed: as the operation speed increases, the trains in the dense atmosphere are subject to the wind induced resistance and various resistances caused by the friction between the wheels and the rails and by the irregularity of tracks, and the noise will also increase with a high power. Therefore, the economy and safety issues involved in the operation have become the main factors restricting the further improving of the speed of high speed railway. A scheme of vacuum pipelines of underwater vacuum tunnel and/or subwater bridge is proposed in this paper: the pipelines and cars are sealed and vacuated to form the quasi vacuum. The transportation system of the vacuum maglev train at ultrahigh speed with the HTS maglev technology can achieve the operation speed more than 4 times that of the existing HSR train (about 1 200 km/h). Key technologies for constructing the vacuum maglev tunnels/subwater bridges in respect of construction plans, vacuating and sealing, as well as maglev trains are introduced in this paper. The subjects to be further studied on the vacuum HTS maglev tunnels (pipelines) are analyzed from the aspects of technology, management, construction costs, operation expenses, candidate project, airtight materials for cars and evacuation in case of emergencies. It is recommended that "cross sea maglev train in vacuum tunnel" should be developed in the eco tourism project between the coastal cities and their neighboring islands and a series of necessary technical tests should be conducted during the trial operation, so as to obtain related experience. Based on the experience and lessons learned, the transportation system at ultrahigh speed may be implemented for strait crossing projects in China. Finally, a brief introduction to the research on HSR trains at ultrahigh speed in countries such as China, the United States and the Netherlands is presented in this paper. The development of vacuum pipeline transportation can drive the development of China′s transportation modes in a faster, safer and more energy efficient manner, facilitating the development of the fifth generation of transportation industry and its driving role in the social and economic development, and promoting the integration and progress of the economy of China or even the world at a higher speed. 相似文献