首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
交通荷载作用下路基变形是道路工程主要研究问题。对煤矸石填料进行动三轴试验,研究了煤矸石填料变形特性与累积振次、动荷载幅值的变化规律,并依据交通荷载动力特性,对交通荷载作用下路基变形响应进行数值模拟。试验和数值模拟结果表明:煤矸石填料变形随累积振次增加而增长,前期增长速度较快,后期增长速度缓慢且变形值逐渐趋于定值;相同振次条件下,变形随动荷载幅值增加而增长;车辆正下方路基沉降位移随路基深度增加而减小,但减小速率逐渐降低,沉降曲线在深度6 m左右出现明显拐点,表明交通荷载影响深度为6 m左右;路基沉降随行车速度增加而增长,这为道路路基设计提供了依据。  相似文献   

2.
采用低路堤高速公路设计方案时,交通荷载会对路基的应力和变形产生较大的影响。文章通过破坏轴向应力试验与累积永久应变试验,模拟了交通荷载对路基的循环作用,研究了不同频率、不同围压、不同应力水平下交通荷载引起的路基变形特征,提出交通荷载作用下低路堤产生沉降的主要因素,供低路堤的设计和处理参考。  相似文献   

3.
山区高速公路路基沉降影响因素研究   总被引:2,自引:0,他引:2  
以河北省保定一阜平高速公路路基工程为研究对象,应用有限元程序建立路基沉降计算模型,分析了不同地基土性质、路堤高度、路堤填料性质条件下路基沉降变形特性,并结合现场沉降观测数据研究了土基变形模量、路基高度、路堤填料容重、路堤变形模量及施工时间对山区高速公路路基沉降的影响规律,为山区高速公路路基差异沉降控制提供参考依据。  相似文献   

4.
与一般路基相比,交通荷载不能在低路堤中充分扩散再传递到地基上,因而加剧了地基的沉降变形,同时交通荷载引起的震动也容易会导致地基土层的不均匀沉降。以连盐高速低路堤路段为工程依托,通过现场试验分析研究了交通荷载作用下低路堤的路基动态特性,其研究结果可为在软土地基上修筑低路堤高速公路设计、施工、管理和养护提供参考。  相似文献   

5.
为分析列车荷载作用下的地基动力及沉降特性,建立了轨道-路堤-地基在列车荷载作用下的动力耦合分析数值模型,考虑列车速度、路堤高度和基床刚度的影响,研究了列车荷载作用下的地基动应力分布及地表沉降特性,并对不同地基加固形式的加固效果进行了探讨。研究结果表明:列车荷载作用下地基动应力沿水平方向和地基深度迅速减小;地基竖向动应力和地基沉降随列车速度的增大而增大,随路堤高度和基床刚度的增大而减小,路堤高度不宜小于2 m;地基沉降随加固深度和加固区刚度增大而减小,列车速度越高,影响越明显,最佳地基加固深度为3 m。  相似文献   

6.
在分析岩土体在重复荷载作用下永久变形产生和发展的规律,以及对常用重复荷载作用下土体永久变形计算方法的基础上,采用单元强度随机生成的有限元方法对重复荷载下岩土体永久变形规律进行了数值仿真,得出以下主要结论:采用单元强度随机生成的有限元方法模拟方法能够较好的表现土体永久变形的基本规律,路基岩土材料的强度变异性是土体在重复荷载下累积变形表现与其他材料差别的主要因素;红层软岩路堤在不同大小的车辆荷载作用下塑性累积变形逐渐发展;当汽车荷载较小,路基在车辆荷载作用下的变形可以稳定。当荷载较大,则沉降渐进发展而且不能稳定,会出现路基土体移动,路基脱空等病害。  相似文献   

7.
针对软土路基沉降变形的特点,分别采用传统的规范中经验系数校正法,不考虑蠕变特性及考虑蠕变特性的有限元方法分析了路基的沉降变形,研究结果表明:路堤填土荷载较大时,且软土路基蠕变性质比较明显时,不适宜采用传统的规范方法计算路基沉降,而采用考虑蠕变影响的有限元分析方法可能更加合适。  相似文献   

8.
填土速率对软土路基变形影响的数值分析   总被引:2,自引:0,他引:2  
基于plaxis软件针对新建彭湖高速K41+200软土路堤建立有限元分析模型,并开展有限元数值计算。通过分析不同填土速率、不同填土间隔时间工况下该断面的稳定与变形情况,得出该断面施工中与工后的沉降变化,并比较在不同填筑速率下施工过程以及工后的沉降变化,论证填土速率对路基施工质量的影响。  相似文献   

9.
针对新疆乌鲁木齐绕城高速公路项目沿线地质条件复杂,气候环境恶劣,存在多处软弱土层的问题,开展乌鲁木齐绕城高速公路项目软土路基设计研究。依据路基设计规范和工程环境特点,解析了乌鲁木齐绕城高速公路项目路堤设计要点,采用理正软土地基路堤设计软件和简化Bishop法,建立了乌鲁木齐绕城高速公路计算路段路堤计算简化模型,剖析了该路段路堤承载力和稳定性性能,并揭示了填土高度对软土路基力学性能的影响机制。结果表明:适当降低填土高度,有助于提高软土路基稳定性和承载力。计算路段采用填土高度6 m方案,稳定性和承载力均无法满足要求,采用填土高度5 m方案,稳定性和承载力均能满足要求。在满足沿线结构物布设的前提下,此类项目宜采用较低的路堤高度。  相似文献   

10.
交通荷载作用下高速公路路面路基动力响应的分布和传递变化规律已成为解决路基问题的重要研究内容.文中针对道路工程结构的特点,研究基于实测路面振动加速度的交通振动荷载识别问题,建立道路结构动力响应计算模型,提出非线性系统交通振动荷载识别的增量有限元方法,推导了由实测加速度响应计算交通荷载的识别公式,通过工程实例分析,得到了一定条件下路面振动荷载时程曲线.  相似文献   

11.
结合高速铁路桩—网结构路基试验段进行数值模拟研究,探讨在填筑阶段桩—网结构的沉降特性及桩、网、土共同作用的承载特性。计算结果表明,桩间距对加筋垫层的相对变形影响显著;桩身应力随路堤填土高度的增加呈增大趋势,且应力分布逐步向线路中心桩靠拢,桩身应力沿深度方向先增大后减小;桩间距不同,土工格栅的拉应力随着路堤填筑高度的变化不同;在填筑初始阶段,桩土应力比较大,随着路堤填高的增加,桩土应力比逐渐减小并趋于稳定。以上结论可为桩—网结构路基设计理论提供科学依据。  相似文献   

12.
运用ABAQUS软件建立了桩网结构低路基动力有限元模型,通过计算结果与实测结果的对比验证了模型的可靠性,并分析了列车荷载下路基中动应力分布、桩土应力比与等沉面高度变化特征。分析结果表明:采用模型计算的路基不同深度处动应力与实测结果最大差值为0.56kPa,动位移的最大差值为7μm,计算和实测的平均动应力和动位移沿路基深度的传递趋势相同,因此,有限元模型可靠;在动荷载作用下,路基中存在土拱效应,土拱高度约为1.6m,与静荷载作用下土拱高度近似,路基表面的应力变化率比路基基底大;路基中动应力的分布受到土拱效应的影响,表现为传递到桩间土上方土体的动应力部分转移至桩顶上方,且在路基垫层附近动应力转移现象最明显;在动荷载作用后,路基中心处桩顶与两桩间的桩土应力比减小,而桩顶与四桩间的桩土应力比增大,桩顶与两桩间的桩土应力比始终大于桩顶与四桩间的桩土应力比;距离路基中心1m处纵断面等沉面高度为1.55m,布置桩体的纵断面等沉面高度大于未布置桩体的纵断面等沉面高度,且沿路基中心到路肩,同类纵断面的等沉面高度逐渐降低,动荷载作用后,路基中心处等沉面高度增大。  相似文献   

13.
为研究路堤荷载下刚柔长短桩复合地基的承载特性,结合某桥头过渡段带帽薄壁管桩(pre-stressed thin-wall concrete,PTC)联合水泥土搅拌桩(cement deep mixed,CDM)的软基处理工程,开展了PTC-CDM组合式长短桩复合地基承载特性现场试验,对路堤填筑过程中桩土应力比、荷载分担比以及桩土沉降差的变化规律进行了分析,并进一步采用有限元对刚柔长短桩复合地基的路堤荷载传递规律进行了数值模拟.试验与计算结果表明:CDM桩顶与桩间土应力增长缓慢,PTC桩帽上应力增长相对较快;填土达到一定高度土拱完全形成后,大量的路堤荷载转移至刚性长桩;刚性长桩和柔性短桩的桩土应力比分别达到7.5和2.1;短桩的存在减少了长桩桩顶荷载和上部桩身出现负摩阻力的深度,中性点位置上移;短桩达到一定桩长时再增加其长度,对路基总沉降影响不明显,因此,短桩桩长可根据承载力要求的临界桩长来设计.   相似文献   

14.
概述 青银高速公路K557+000-K557+710路段,路基平均填土高度6.8m,原天然地基为亚砂土、亚粘土和沙土。青银高速自通车后,由于路堤梯形断面静荷载分布不均匀,加之车辆动荷载加在行车道和超车道上的共同作用,导致路基发生盆型不均匀差异沉降。  相似文献   

15.
基于大型通用有限元软件ABAQUS,建立两种典型半刚性基层沥青路面结构的三维有限元模型,针对3种路基高度和4种路基回弹模量,计算半波正弦荷载作用下路面结构的动态响应,结合半刚性路面各结构层疲劳寿命预估方程,分析路面结构疲劳寿命随路基回弹模量变化的规律和相互协调问题。结合交通等级标准,确定满足不同交通等级的临界路基模量。分析表明:路基模量对沥青层疲劳寿命影响较小,对半刚性基层和永久变形预估寿命影响较大;路基高度对半刚性基层路面各结构层疲劳寿命的影响均较小,尤其是对沥青层疲劳寿命影响更小;具有柔性底基层的半刚性路面结构的临界路基模量比具有半刚性底基层的路面结构大。  相似文献   

16.
以新疆三岔口-莎车高速公路为依托, 基于标准轴载作用下单轮影响范围内的1∶1路基模型试验, 分析了车辆荷载下低路堤的动力特性; 考虑了绿洲区地基在服役期间不同的含水率状态, 根据一般道路设计标准, 将低路堤道路结构分为面层、基层、路基与地基四部分, 模拟了低路堤在不同荷载作用下的动力特性, 研究了动载峰值、频率与重复作用次数对低路堤动力特性的影响。研究结果表明: 不同加载方式下的竖向应力均随路基深度增大而迅速减小, 应力在距路基顶面0.8 m深度处均衰减了69.2%;静载和短时动载作用下各深度处的应力随荷载呈线性变化趋势, 应变则呈非线性变化趋势; 由于不同土层模量的差异, 使得应变在路基与地基中出现了明显的分层现象; 地基含水率的变化对低路堤动力特性的影响非常明显, 当地基含水率从18%增大到28%时, 地基顶面处的应变增大了1.8倍; 短时动载频率的增大对应力和应变的影响都很小, 当动载频率由1 Hz增大到5 Hz时, 路基与地基顶面处的应力分别减小了7%和9%;当静载、短时动载和长时动载的峰值为50 kN时, 短时动载峰值作用下路基与地基顶面处的应力和应变分别是静载作用的79%~95%和75%~95%, 而长时动载引起的路基与地基顶面处的应力和应变分别是静载作用的1.0~1.1倍和1.9~3.3倍。   相似文献   

17.
为研究高路堤动态填筑全过程沉降变形特性,基于非线性有限元数值模拟,对比分析高路堤与一般路堤分层动态填筑过程中地基面沉降、路堤面沉降和坡脚处地基剖面侧向位移的分布演变规律,讨论填料轻质化、压实度提高对沉降变形的影响。研究发现:高路堤分层填筑全过程中堤身荷载不容忽视,采用轻质填料可极大减小高路堤的压缩变形和地基沉降;随着压实度的提高,如路堤填土弹性模量增加2倍,高路堤路基面沉降则减小16. 9%,而地基面沉降和坡脚处地基剖面侧向位移影响甚微。  相似文献   

18.
为了研究桩承式路堤中填土的破坏模式,采用有限元方法对不同桩间距、填土高度和摩擦角进行了参数敏感性分析.根据计算得到的屈服区和增量等效塑性应变结果,分析了不同情况下填土的破坏机理.结果显示:对于填土高度与桩间距之比H/s≤1的低路堤,填土中的破坏面为通过桩边缘的竖直面;对于H/s≥1.2的高路堤的情况,最终填土中将发展出...  相似文献   

19.
铁路隧道下穿既有高速公路引起路基路面沉降,威胁交通安全.通过建立隧道-地基-路基相互作用计算模型,在路面荷载作用下,采用数值计算方法分析计算了隧道下穿深度、地层模量、泊松比及强度参数等因素与路基沉降变形规律之间的关系.计算结果表明,隧道下穿深度不仅影响路基沉降变形的大小,而且影响沉降槽的形状,而土层性质主要对路基沉降变形影响较大,对沉降槽形状影响相对较小.计算结果较好地反映了不同因素对路基沉降变形的影响,对类似工程的设计和施工具有参考意义.  相似文献   

20.
以大准铁路项目为依托,选取K36+480处填方路基,基于有限差分软件FLAC 3D软件,采用三维简化模型,讨论了列车荷载、填土压实系数、路基填土层或下卧层弹性模量对路基不均匀沉降的影响。结果表明:列车荷载作用使得路基中心处和边缘处之间的沉降差加大,进而导致路基表面不平整,产生不均匀沉降;不同压实系数路基填土沉降趋势大致相同,路基的稳定性和坚固性随压实系数的增大而增加;路基填土层或下卧层(黄土)弹性模量差异会引起路基的不均匀沉降,当其达到一定值时,对路基沉降影响不大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号