首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
为研究车身A柱和后视镜的风噪,建立汽车简化模型。基于气动声学风洞试验,设计了外形配置不同的5种模型。以A计权声压级和语音清晰度为评价指标,对侧窗外表面、远场和车内风噪展开对比分析。结果表明:A柱涡区域内高频风噪衰减较快;方形A柱对后视镜风噪具有明显掩蔽作用;后视镜风噪中存在压力级峰值,对应特征频率随风速升高而增加;随风速升高,各模型车窗、远场和车内风噪均明显增加;偏航时,车窗风噪在全频段内表现出迎风侧降低、背风侧升高的趋势,远场风噪与车内风噪在不同频段展现相同趋势。  相似文献   

2.
采用CFD(Computational Fluid Dynamics,计算流体动力学)方法对某乘用车型的A柱风噪性能进行数值模拟,得到了不同工况下A柱区域的气流分离结果。结果表明原方案的A柱气流分离明显,存在风噪风险。通过CFD方法提出多种优化设计方案,并对优化方案进行单因素和综合因素分析,得到最优方案,有效减小了气流分离,降低了A柱的风噪风险。  相似文献   

3.
某轻型客车在开发阶段,风噪主观驾评时,发现在100km/h以上时,车内存在明显的“噗噗”低频风噪声,采集车内噪声数据进行分析,分析出“噗噗”声频率位于170-190Hz之间。经问题诊断,锁定“噗噗”声来自于A柱雨檐密封条的唇边处。为解决A柱雨檐密封条风噪问题,首先研究“噗噗”声产生的机理;然后研究增大前门与A柱面差、增大A柱雨檐密封条唇边密度、减短雨檐密封条唇边长度等方案;紧接着分析上述几种方案的实施情况,确定实施前门与A柱设计面差增大至3mm的方案;最后进行经验总结,制定设计标准,避免后续新车型开发过程中出现A柱雨檐密封条风噪问题。  相似文献   

4.
为分析侧窗雨水管理中A柱漫流对侧窗视野区的影响,通过计算流体力学(CFD)仿真和环境风洞试验相结合的方法,对前风窗玻璃水流越过A柱后在侧窗表面流动的过程进行了分析和研究,证明了 CFD瞬态分析方法能够预测A柱漫流的位置和侧窗水流在风力作用下的运动轨迹.通过A柱优化方案的试验结果对比和流场分析,验证了A柱结构优化能够改善...  相似文献   

5.
侧风下汽车外流场中不同前车窗倾角下的气流流动分离规律,对汽车侧风中的稳定性有重要意义。该文建立了前车窗角度分别为20°、25°、30°、35°和40°的车身模型,使用CFD仿真软件--Star-ccm+进行数值计算,模拟了侧风为8 m/s,行驶速度为20 m/s时的车身外流场。结果表明:侧风中前车窗角度变化对汽车侧向力系数影响最大;前车窗角度为35°时,汽车的行驶稳定性最好,且随着前车窗角度的增大,车身底部气流在车尾的分离推迟,尾涡数量减少。对35°车身模型的剪切应力分析指出:对侧风背风侧A柱区及侧风迎风侧C柱区优化分析是进一步提高汽车侧风气动性能的研究方向。  相似文献   

6.
雷宇宇 《时代汽车》2022,(1):131-132
文章根据某车型冲压窗框结构在高速行驶过程中的风噪分析,从车门密封条、车门钣金、侧围匹配状态及密封条结构进行对比分析,查出风噪原因以及制定改进方案,解决车门密封条带来的风噪问题,从而得出后续新车型类似匹配结构设计优化方向.  相似文献   

7.
为有效解决某SUV在高速行驶时驾驶员位置处风噪大的问题,文章结合风噪的产生机理,对风噪激励源和风噪传播路径进行系统梳理。采用计算机仿真分析和实车试验相结合的方式,从整车局部外造型、声音泄漏和声音透射3个方向进行分析,并提出可行的优化方案。通过对优化方案实施前后驾驶员位置的风噪问题进行主观评价和客观数据对比,验证了优化方案的有效性,提升了该车在高速行驶时的车内声音品质。  相似文献   

8.
为了实现风噪开发工作前移并降低风噪开发成本,探讨了建造声学舱对新车型开发的必要性和建造声学舱的技术方法,并通过声学舱风洞试验,验证了某车型A柱饰条、前风挡上部、后视镜镜柄、后视镜底座等部位造型对风噪性能的影响。研究表明,利用声学舱提前验证A柱、前风挡、后视镜等部位造型对风噪性能的影响,对提前规避风噪问题、减少开发成本具有重要意义。  相似文献   

9.
CFD技术在汽车车身设计中的应用   总被引:1,自引:0,他引:1  
从汽车空气动力学分析中常见的局部问题着手,探讨了CFD计算对车身设计的辅助作用,描述了发动机舱进气散热性能评估、空调进风效率评估、A柱局部修改、后视镜风噪预估、后扰流板及前保险杠优化分析等.通过这些局部细节来考察车身设计,可以为车身空气动力学分析提供工程参考.  相似文献   

10.
本文中对某一SUV风噪的预测与控制进行研究.首先基于风洞测试进行风噪声源特性与传递路径的分析,发现泄漏噪声主要发生在500 Hz以上中高频段,车底风噪主要集中于800 Hz以下中低频段,而在外形噪声中,由车顶和四门传递的风噪的贡献大于翼子板.然后基于气动噪声直接计算法和统计能量分析对外形噪声进行仿真,并结合风洞测试分析...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号