首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spatiotemporal analyses of freeway sites in Part I have shown that special-lane access points are prone to become bottlenecks. These can degrade traffic flows, sometimes in all lanes. Part II explores select impacts of re-designing the means of entering and exiting a special lane, and of altering the policy governing its use. Parametric tests were conducted using a computer simulation model that was calibrated to one of the sites studied in Part I; one with a buffer-separated carpool lane. Though less reliable than what might have been observed via experiments in real settings, the simulated findings seem to offer useful insights nonetheless.The findings indicate that traffic conditions would improve at the site by elongating the carpool lane’s buffer opening beyond its present length of 400 m. Yet, only modest improvements were predicted, even when the opening was elongated to 1000 m or more. Greater benefits were predicted from disentangling the movements made into and out of the carpool lane. This was achieved by placing first a buffer opening to serve only ingress, followed by another immediately downstream to serve egress. The benefits of this treatment were again limited, even when each tandem opening was elongated to a length of 700 m. Fully removing the buffer that physically separates the carpool lane from the regular ones was predicted to bring the greatest improvements to traffic. Also examined was pending legislation that would leave the carpool-lane buffer in place, while limiting the times of day when the lane is reserved for special use. Simulations predict that this legislation would degrade travel conditions below those that presently occur at the site. The extent of this predicted degradation varied, depending upon the time of day when the lane-use restriction went into effect.  相似文献   

2.
Recent years have seen a renewed interest in Variable Speed Limit (VSL) strategies. New opportunities for VSL as a freeway metering mechanism or a homogenization scheme to reduce speed differences and lane changing maneuvers are being explored. This paper examines both the macroscopic and microscopic effects of different speed limits on a traffic stream, especially when adopting low speed limits. To that end, data from a VSL experiment carried out on a freeway in Spain are used. Data include vehicle counts, speeds and occupancy per lane, as well as lane changing rates for three days, each with a different fixed speed limit (80 km/h, 60 km/h, and 40 km/h). Results reveal some of the mechanisms through which VSL affects traffic performance, specifically the flow and speed distribution across lanes, as well as the ensuing lane changing maneuvers. It is confirmed that the lower the speed limit, the higher the occupancy to achieve a given flow. This result has been observed even for relatively high flows and low speed limits. For instance, a stable flow of 1942 veh/h/lane has been measured with the 40 km/h speed limit in force. The corresponding occupancy was 33%, doubling the typical occupancy for this flow in the absence of speed limits. This means that VSL strategies aiming to restrict the mainline flow on a freeway by using low speed limits will need to be applied carefully, avoiding conditions as the ones presented here, where speed limits have a reduced ability to limit flows. On the other hand, VSL strategies trying to get the most from the increased vehicle storage capacity of freeways under low speed limits might be rather promising. Additionally, results show that lower speed limits increase the speed differences across lanes for moderate demands. This, in turn, also increases the lane changing rate. This means that VSL strategies aiming to homogenize traffic and reduce lane changing activity might not be successful when adopting such low speed limits. In contrast, lower speed limits widen the range of flows under uniform lane flow distributions, so that, even for moderate to low demands, the under-utilization of any lane is avoided. These findings are useful for the development of better traffic models that are able to emulate these effects. Moreover, they are crucial for the implementation and assessment of VSL strategies and other traffic control algorithms.  相似文献   

3.
Real data show that reserving a lane for carpools on congested freeways induces a smoothing effect that is characterized by significantly higher bottleneck discharge flows (capacities) in adjacent lanes. The effect is reproducible across days and freeway sites: it was observed, without exception, in all cases tested. Predicted by an earlier theory, the effect arises because disruptive vehicle lane changing diminishes in the presence of a carpool lane. We therefore conjecture that smoothing can also be induced by other means that would reduce lane changing.The benefits can be large. Queueing analysis shows that the smoothing effect greatly reduces the times spent by people and vehicles in queues. For example, by ignoring the smoothing effect at one of the sites we analyzed one would predict that its carpool lane increased both the people-hours and the vehicle-hours traveled by well over 300%. In reality, the carpool lane reduced both measures due to smoothing. The effect is so significant that even a severely underused carpool lane can in some instances increase a freeway bottleneck’s total discharge flow. This happens for the site we analyzed when carpool demand is as low as 1200 vph.  相似文献   

4.
We verify that slow speeds in a special-use lane, such as a carpool or bus lane, can be due to both, high demand for that lane and slow speeds in the adjacent regular-use lane. These dual influences are confirmed from months of data collected from all freeway carpool facilities in the San Francisco Bay Area. Additional data indicate that both influences hold: for other types of special-use lanes, including bus lanes; and for other parts of the world.The findings do not bode well for a new US regulation stipulating that most classes of Low-Emitting Vehicles, or LEVs, are to vacate slow-moving carpool lanes. These LEVs invariably constitute small percentages of traffic; e.g. they are only about 1% of the freeway traffic demand in the San Francisco Bay Area. Yet, we show: that relegating some or all of these vehicles to regular-use lanes can significantly add to regular-lane congestion; and that this, in turn, can also be damaging to vehicles that continue to use the carpool lanes. Counterproductive outcomes of this kind are predicted first by applying kinematic wave analysis to a real Bay Area freeway. Its measured data indicate that the site selected for this analysis stands to suffer less from the regulation than will others in the region. Yet, we predict: that the regulation will cause the site’s people-hours and vehicle-hours traveled during the rush to each increase by more than 10%; and that carpool-lane traffic will share in the damages. Real data from the site support these predictions. Further parametric analysis of a hypothetical, but more generic freeway system indicates that these kinds of negative outcomes will be widespread. Constructive ways to amend the new regulation are discussed, as are promising strategies to increase the vehicle speeds in carpool lanes by improving the travel conditions in regular lanes.  相似文献   

5.
A high-occupancy/toll (HOT) lane is an increasingly popular form of traffic management strategy which reserves a set of freeway lanes for HOVs and transit users, while allowing low-occupancy vehicles (LOVs) to enter for a fee. In turn, HOT lanes maintain a minimal level of service by regulating the volume of entering LOVs. The focus of this paper is how to model the choice process of individual drivers, which dictates the volume of LOVs that choose to pay and take the HOT lane. Such models and the insights they provide can be very helpful for the toll setting process. Two simple formulations (an all-or-nothing assignment and an additive logit model) are compared with a proposed formulation based on the population value of time (VOT) distribution. Both static and dynamic toll setting algorithms are studied based on the proposed lane choice model, and their performance is compared under deterministic traffic behavior.  相似文献   

6.
This paper describes a methodology for predicting the delay to major street through vehicles at two-way stop-controlled intersections. This delay is incurred when major street left-turn demand exceeds the available storage area and blocks the adjacent through lane. The through lane blockage problem does not generally occur with significant frequency on streets with divided cross sections that have left-turn bays or lanes; however, it frequently occurs on undivided streets due to their lack of left-turn storage. To minimize this delay, through drivers often merge with vehicles in the adjacent through lane—if there is an adequate gap for them to safely merge into. If there is no merge opportunity, then the through drivers will stay in the inside lane until the queue ahead dissipates. The through vehicle delay predicted by the methodology was found to be relatively small (i.e. less than 5 s veh−1) when compared with delays commonly incurred by non-priority movements at unsignalized intersections. However, when expressed in terms of total vehicle hours of delay, the effect can be quite significant. In general, through vehicle delay increases with increasing approach flow rate and left-turn percentage. However, at flow rates in excess of about 1400 veh h−1, delays increase very rapidly and there is evidence that larger left-turn percentages may have lower delays. ©  相似文献   

7.
This paper develops a novel linear programming formulation for autonomous intersection control (LPAIC) accounting for traffic dynamics within a connected vehicle environment. Firstly, a lane based bi-level optimization model is introduced to propagate traffic flows in the network, accounting for dynamic departure time, dynamic route choice, and autonomous intersection control in the context of system optimum network model. Then the bi-level optimization model is transformed to the linear programming formulation by relaxing the nonlinear constraints with a set of linear inequalities. One special feature of the LPAIC formulation is that the entries of the constraint matrix has only {−1, 0, 1} values. Moreover, it is proved that the constraint matrix is totally unimodular, the optimal solution exists and contains only integer values. It is also shown that the traffic flows from different lanes pass through the conflict points of the intersection safely and there are no holding flows in the solution. Three numerical case studies are conducted to demonstrate the properties and effectiveness of the LPAIC formulation to solve autonomous intersection control.  相似文献   

8.
Reversible traffic operations have become an increasingly popular strategy for mitigating traffic congestion associated with the directionally unbalanced traffic flows that are a routine part of peak commute periods, planned special events, and emergency evacuations. It is interesting that despite its widespread and long‐term use, relatively little is known about the operational characteristics of this form of operation. For example, the capacity of a reversed lane has been estimated by some to be equal to that of a normal lane while others have theorized it to be half of this value. Without accurate estimates of reversible lane performance it is not possible to confidently gauge the benefits of reversible roadways or model them using traffic simulation. This paper presents the results of a study to measure and evaluate the speed and flow characteristics of reverse‐flow traffic streams by comparing them under various operating conditions and locations. It was found that, contrary to some opinions, the flow characteristics of reverse‐flowing lanes were generally similar to normally flowing lanes under a variety of traffic volume, time‐of‐day, location, and type‐of‐use conditions. The study also revealed that drivers will readily use reversible lanes without diminished operating speeds, particularly as volumes increase. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Auxiliary lanes connecting freeway entrance and exit ramps provide additional space for entering and exiting vehicles to change lanes. The method of dropping auxiliary lanes is critical in the design of freeway auxiliary lanes. This study investigates the performance of different methods of dropping auxiliary lanes. Case studies were conducted at two selected freeway segments with successive entrance or exit ramps in the City of Houston. Traffic simulation analysis results of these two case studies show that additional operational benefits can be achieved by extending an auxiliary lane beyond the freeway weaving segment. The study also found that if the weaving segment is followed by an entrance/exit ramp and this ramp has high traffic volume, it can be less operationally favorable to extend and terminate the auxiliary lane at this entrance/exit ramp location. Instead, dropping the auxiliary lane before this entrance/exit ramp represents a more operationally effective option.  相似文献   

10.
Innovative traffic management measures are needed to reduce transportation-related emissions. While in Europe, road lane management has focused mainly on introduction of bus lanes, the conversion to High Occupancy Vehicles (HOV) and eco-lanes (lanes dedicated to vehicles running on alternative fuels) has not been studied comprehensively. The objectives of this research are to: (1) Develop an integrated microscopic modeling platform calibrated with real world data to assess both traffic and emissions impacts of future Traffic Management Strategies (TMS) in an urban area; (2) Evaluate the introduction of HOV/eco-lanes in three different types of roads, freeway, arterial and urban routes, in an European medium-sized city and its effects in terms of emissions and traffic performance. The methodology consists of three distinct phases: (a) Traffic and road inventory data collection; (b) Traffic and emissions simulation using an integrated platform of microscopic simulation; and (c) Evaluation of scenarios. For the baseline scenario, the statistical analysis shows valid results. The results show that HOV and eco-lanes in a medium European city are feasible, and when the Average Occupancy of Vehicles (AOV) increases, on freeways, the majority of vehicles can reduce their travel time (2%) with a positive impact in terms of total emissions (−38% NOx, −39% HC, −43% CO and −37% CO2). On urban and arterial corridors, the reduction in emissions could be achieved only if the AOV increases from 1.50 to 1.70 passengers/vehicle. Total emissions of the corridor with an AOV of 1.70 passengers/vehicle can be reduced up to 35–36% for the urban route while the values can be reduced by 36–39% for the arterial road. With the introduction of Hybrid Electric Vehicles (HEV) and Electric Vehicles (EV) it is possible to reduce emissions, although the introduction of eco-lanes did not show significant reductions in emissions. When both policies are simulated together, an emissions improvement is observed for the arterial route and for two of the scenarios.  相似文献   

11.
The main obstacles to boosting the bicycle as a mode of transport are safety concerns due to interactions with motorized traffic. One option is to separate cyclists from motorists through exclusive bicycle priority lanes. This practice is easily implemented in uncongested traffic. Enforcing bicycle lanes on congested roads may degenerate the network, making the idea very hard to sell both to the public and the traffic authorities. Inspired by Braess Paradox, we take an unorthodox approach to seeking latent misutilized capacity in the congested networks to be dedicated to exclusive bicycle lanes. The aim of this study is to tailor an efficient and practical method to large size urban networks. Hence, this paper appeals to policy makers in their quest to scientifically convince stakeholder that bicycle is not a secondary mode, rather, it can be greatly accommodated along with other modes even in the heart of the congested cities. In conjunction with the bicycle lane priority, other policy measures such as shared bicycle scheme, electric-bike, integration of public transport and bicycle are also discussed in this article. As for the mathematical methodology, we articulated it as a discrete bilevel mathematical programing. In order to handle the real networks, we developed a phased methodology based on Branch-and-Bound (as a solution algorithm), structured in a less intensive RAM manner. The methodology was tested on real size network of city of Winnipeg, Canada, for which the total of 30 road segments – equivalent to 2.77 km bicycle lanes – in the CBD were found.  相似文献   

12.
A novel multiclass macroscopic model is proposed in this article. In order to enhance first-in, first-out property (FIFO) and transmission function in the multiclass traffic modeling, a new multiclass cell transmission model with FIFO property (herein called FM-CTM) is extended from its prior multiclass cell transmission model (M-CTM). Also, to enhance its analytical compactness and resultant computational convenience, FM-CTM is formulated in this paper as a set of closed-form matrix equations. The objective is to improve the accuracy of traffic state estimation by enforcing FIFO property when a fast vehicle cannot overtake a slow vehicle due to a limitation of a single-lane road. Moreover, the proposed model takes into account a different priority for vehicles of each class to move forward through congested road conditions, and that makes the flow calculation independent from their free-flow speeds. Some hypothetical and real-world freeway networks with a constant or varying number of lanes are selected to verify FM-CTM by comparing with M-CTM and the conventional CTM. Observed densities of VISSIM and real-world dataset of I-80 are selected to compare with the simulated densities from the three CTMs. The numerical results show that FM-CTM outperforms the other two models by 15% of accuracy measures in most cases. Therefore, the proposed model is expected to be well applicable to the road network with a mixed traffic and varying number of lanes.  相似文献   

13.
One source of vehicle conflict is the freeway weaving section, where a merge and diverge in close proximity require vehicles either entering or exiting the freeway to execute one or more lane changes. Using accident data for a portion of Southern California, we examined accidents that occurred on three types of weaving sections defined in traffic engineering: Type A, where every merging or diverging vehicle must execute one lane change, Type B, where either merging or diverging can be done without changing lanes, and Type C, where one maneuver requires at least two lane changes. We found no difference among these three types in terms of overall accident rates for 55 weaving sections over one year (1998). However, there were significant differences in terms of the types of accidents that occur within these types in terms of severity, and location of the primary collision, the factors causing the accident, and the time period in which the accident is most likely to occur. These differences in aspects of safety lead to implications for traffic engineering improvements.  相似文献   

14.
In this paper, a person-capacity-based optimization method for the integrated design of lane markings, exclusive bus lanes, and passive bus priority signal settings for isolated intersections is developed. Two traffic modes, passenger cars and buses, have been considered in a unified framework. Person capacity maximization has been used as an objective for the integrated optimization method. This problem has been formulated as a Binary Mixed Integer Linear Program (BMILP) that can be solved by a standard branch-and-bound routine. Variables including, allocation of lanes for different passenger car movements (e.g., left turn lanes or right turn lanes), exclusive bus lanes, and passive bus priority signal timings can be optimized simultaneously by the proposed model. A set of constraints have been set up to ensure feasibility and safety of the resulting optimal lane markings and signal settings. Numerical examples and simulation results have been provided to demonstrate the effectiveness of the proposed person-capacity-based optimization method. The results of extensive sensitivity analyses of the bus ratio, bus occupancy, and maximum degree of saturation of exclusive bus lanes have been presented to show the performance and applicable domain of the proposed model under different composition of inputs.  相似文献   

15.
Light rail transit (LRT) systems constitute one of the most sustainable public transportation modes and transit agencies have increasingly constructed LRT lines along the median of roadways to reduce land acquisition costs and traffic conflicts. Despite these conveniences, few studies have examined the air pollution and noise exposures for passengers on LRT station platforms within freeway or arterial medians. In response, we monitored particle number count (PNC) concentrations and noise levels on 17 station platforms in the Los Angeles metro system in summer 2012 and assessed differences between freeway and arterial platforms. We visited each station on average 7 times for approximately 19 min with two teams carrying a full set of instruments. As expected, impacts were higher on green line platforms in the center of a grade-separated freeway compared to blue line platforms in the center of an arterial due to being in close proximity to greater traffic volumes. Overall, freeway-arterial platform differences were 35,100 versus 20,000 particles/cm3 for PNC and 83 versus 62 dBA for noise. This average noise intensity on green line platforms was four times that on blue line stations. We also found that PNC concentrations were significantly higher at open air monitoring platform positions compared to standing under a shade canopy (about 2000 particles/cm3 higher), but that noise levels were significantly lower at open air positions compared to under canopy positions (about 3.2 dBA lower). Results identify important factors for transport planners to consider when locating and designing in-roadway LRT platforms.  相似文献   

16.
This paper deals with driver behavior while travelling on and merging from acceleration lanes. Two possible groups of drivers were identified: drivers who always perform the merging maneuver during the second part of the acceleration lane, regardless of whether an appropriate gap or lag was available to them previously. Three components of the aggregated delay for the merging process were suggested and evaluated. A method of estimating the random delay and travel time on acceleration lane was proposed and evaluated against an aggregated empirical data obtained on three freeway acceleration lanes. An evaluation of the contribution of the ramp volume to the traffic delay was also performed and discussed and a graph which may be of practical use for road and traffic engineers in assessing the expected influence of various ramp and freeway volume combinations is presented.  相似文献   

17.
This paper looks at CO2 emissions on limited access highways in a microscopic and stochastic environment using an optimal design approach. Estimating vehicle emissions based on second-by-second vehicle operation allows the integration of a microscopic traffic simulation model with the latest US Environmental Protection Agency’s mobile source emissions model to improve accuracy. A factorial experiment on a test bed prototype of the I-4 urban limited access highway corridor located in Orlando, Florida was conducted to identify the optimal settings for CO2 emissions reduction and to develop a microscopic transportation emission prediction model. An exponentially decaying function towards a limiting value expressed in the freeway capacity is found to correlate with CO2 emission rates. Moreover, speeds between 55 and 60 mph show emission rate reduction effect while maintaining up to 90% of the freeway’s capacity. The results show that speed has a significant impact on CO2 emissions when detailed and microscopic analysis of vehicle operations of acceleration and deceleration are considered.  相似文献   

18.
Measurements taken downstream of freeway/on-ramp merges have previously shown that discharge flow diminishes when a merge becomes an isolated bottleneck. By means of observation and experiment, we show here that metering an on-ramp can recover the higher discharge flow at a merge and thereby increase the merge capacity. Detailed observations were collected at a single merge using video. These data revealed that the reductions in discharge flow are triggered by a queue that forms near the merge in the freeway shoulder lane and then spreads laterally, as drivers change lanes to maneuver around slow traffic. Our experiments show that once restrictive metering mitigated this shoulder lane queue, high outflows often returned to the median lane. High merge outflows could be restored in all freeway lanes by then relaxing the metering rate so that inflows from the on-ramp increased. Although outflows recovered in this fashion were not sustained for periods greater than 13 min, the findings are the first real evidence that ramp metering can favorably affect the capacity of an isolated merge. Furthermore, these findings point to control strategies that might generate higher outflows for more prolonged periods and increase merge capacity even more. Finally, the findings uncover details of merge operation that are essential for developing realistic theories of merging traffic.  相似文献   

19.
This paper presents the results of the mail out survey conducted in the United States to unveil the current state of practice related to the posting of minimum speed limit signs on Interstate freeway system. The analysis of the survey results has revealed that half of the country (25 states) posts the minimum speed limit on Interstate freeways. The most common posting is 40 mph. There are few states that post 45 mph and 55 mph in some sections on Interstate freeways. The survey results has also discovered that many states raised the maximum speed limits on Interstate freeways as the consequence of the National Highway System (NHS) designation Act of 1995 without revising or studying the effect of the existing minimum speed limits on traffic operation. Implications for future research relates to a multi state study which will evaluate the relevance of minimum speed limits on speed variability that is created by the posting of minimum speed limit.  相似文献   

20.
Prior research on ultrafine particles (UFP) emphasizes that concentrations are especially high on-highway, and that time on highways contribute disproportionately to total daily exposures. This study estimates individual and population exposure to ultra-fine particles in the Minneapolis – St. Paul (Twin Cities) metropolitan area, Minnesota. Our approach combines a real-time model of on-highway size-resolved UFP concentrations (32 bins, 5.5–600 nm); individual travel patterns, derived from GPS travel trajectories collected in 144 individual vehicles (123 h at locations with UFP estimates among 624 vehicle-hours of travel); and, loop-detector data, indicating real-time traffic conditions throughout the study area. The results provide size-resolved spatial and temporal patterns of exposure to UFP among freeway users. On-highway exposures demonstrate significant variability among users, with highest concentrations during commuting peaks and near highway interchanges. Findings from this paper could inform future epidemiological studies in on-road exposure to UFP by linking personal exposures to traffic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号