首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Empirical studies showed that travel time reliability, usually measured by travel time variance, is strongly correlated with travel time itself. Travel time is highly volatile when the demand approaches or exceeds the capacity. Travel time variability is associated with the level of congestion, and could represent additional costs for travelers who prefer punctual arrivals. Although many studies propose to use road pricing as a tool to capture the value of travel time (VOT) savings and to induce better road usage patterns, the role of the value of reliability (VOR) in designing road pricing schemes has rarely been studied. By using road pricing as a tool to spread out the peak demand, traffic management agencies could improve the utility of travelers who prefer punctual arrivals under traffic congestion and stochastic network conditions. Therefore, we could capture the value of travel time reliability using road pricing, which is rarely discussed in the literature. To quantify the value of travel time reliability (or reliability improvement), we need to integrate trip scheduling, endogenous traffic congestion, travel time uncertainty, and pricing strategies in one modeling framework. This paper developed such a model to capture the impact of pricing on various costs components that affect travel choices, and the role of travel time reliability in shaping departure patterns, queuing process, and the choice of optimal pricing. The model also shows the benefits of improving travel time reliability in various ways. Findings from this paper could help to expand the scope of road pricing, and to develop more comprehensive travel demand management schemes.  相似文献   

2.
Empirical studies have revealed that travel time variability (TTV) can significantly affect travelers’ behaviors and planners’ cost-benefit assessment of transportation projects. It is therefore important to systematically quantify the value of TTV (VTTV) and its impact. Recently, Fosgerau’s valuation method makes this quantification possible by converting the value of travel time (VTT) and the VTTV into monetary unit. Travel time reliability ratio (TTRR), defined as a ratio of the VTTV to the VTT, is a key parameter in Fosgerau’s valuation method. Calculating TTRR involves an integral of the inverse cumulative distribution function (CDF) of the standardized travel time distribution (STTD), i.e., the mean lateness factor. Using a well-fitted STTD is a straightforward way to calculate TTRR. However, it will encounter the following challenges: (1) determination of a well-fitted STTD; (2) non-existence of an algebraic expression for the CDF and its inverse CDF; and (3) lack of a closed-form expression to efficiently calculate TTRR. To circumvent the above issues, this paper proposes a distribution-fitting-free analytical approach based on the Cornish-Fisher expansion as an alternative way to calculate TTRR without the need to fit the whole CDF. The validity domain is rigorously derived for guaranteeing the accuracy of the proposed method. Realistic travel time datasets that cover 17 links are used to systematically explore the feature and accuracy of the proposed method in estimating TTRR. The comparative results demonstrate that the proposed method can efficiently and effectively estimate TTRR. When travel time datasets satisfy the validity domain, the proposed method outperforms the distribution fitting method in estimating TTRR.  相似文献   

3.
Travel time, travel time reliability and monetary cost have been empirically identified as the most important criteria influencing route choice behaviour. We concentrate on travel time and travel time reliability and review two prominent user equilibrium models incorporating these two factors. We discuss some shortcomings of these models and propose alternative bi-objective user equilibrium models that overcome the shortcomings. Finally, based on the observation that both models use standard deviation of travel time within their measure of travel time reliability, we propose a general travel time reliability bi-objective user equilibrium model. We prove that this model encompasses those discussed previously and hence forms a general framework for the study of reliability related user equilibrium. We demonstrate and validate our concepts on a small three-link example.  相似文献   

4.
Traffic incidents are recognised as one of the key sources of non-recurrent congestion that often leads to reduction in travel time reliability (TTR), a key metric of roadway performance. A method is proposed here to quantify the impacts of traffic incidents on TTR on freeways. The method uses historical data to establish recurrent speed profiles and identifies non-recurrent congestion based on their negative impacts on speeds. The locations and times of incidents are used to identify incidents among non-recurrent congestion events. Buffer time is employed to measure TTR. Extra buffer time is defined as the extra delay caused by traffic incidents. This reliability measure indicates how much extra travel time is required by travellers to arrive at their destination on time with 95% certainty in the case of an incident, over and above the travel time that would have been required under recurrent conditions. An extra buffer time index (EBTI) is defined as the ratio of extra buffer time to recurrent travel time, with zero being the best case (no delay). A Tobit model is used to identify and quantify factors that affect EBTI using a selected freeway segment in the Southeast Queensland, Australia network. Both fixed and random parameter Tobit specifications are tested. The estimation results reveal that models with random parameters offer a superior statistical fit for all types of incidents, suggesting the presence of unobserved heterogeneity across segments. What factors influence EBTI depends on the type of incident. In addition, changes in TTR as a result of traffic incidents are related to the characteristics of the incidents (multiple vehicles involved, incident duration, major incidents, etc.) and traffic characteristics.  相似文献   

5.
This paper presents a transit network optimization method, in which travel time reliability on road is considered. A robust optimization model, taking into account the stochastic travel time, is formulated to satisfy the demand of passengers and provide reliable transit service. The optimization model aims to maximize the efficiency of passenger trips in the optimized transit network. Tabu search algorithm is defined and implemented to solve the problem. Then, transit network optimization method proposed in this paper is tested with two numerical examples: a simple route and a medium-size network. The results show the proposed method can effectively improve the reliability of a transit network and reduce the travel time of passengers in general.  相似文献   

6.
Urban expressways usually experience several levels of service (LOS) because of the stop-and-go traffic flow caused by congestion. Moreover, multiple shock waves generate at different LOS interfaces. The dynamic of shock waves strongly influences the travel time reliability (TTR) of urban expressways. This study proposes a path TTR model that considers the dynamic of shock waves by using probability-based method to characterize the TTR of urban expressways with shock waves. Two model parameters are estimated, namely distribution of travel time (TT) per unit distance and travel distances in different LOS segments. Generalized extreme value distribution and generalized Pareto distribution are derived as distributions of TT per unit distance for six different LOS. Distribution parameters are estimated by using historical floating car data. Travel distances in different LOS segments are calculated based on shock wave theory. The range of TT along the path, which can help drivers arrange their trips, can be obtained from the TTR model. Finally, comparison is made among the proposed TTR model, generalized Pareto contrast model, which does not consider different LOS or existence of shock waves, and normal contrast model, which assumes TT per unit distance as normal distribution without considering shock wave. Results show that the proposed model achieves higher prediction accuracy and reduces the prediction range of TT. The conclusions can be further extended to TT prediction and assessment of measures to improve reliability of TT in a network.  相似文献   

7.
Estimating the travel time reliability (TTR) of urban arterial is critical for real-time and reliable route guidance and provides theoretical bases and technical support for sophisticated traffic management and control. The state-of-art procedures for arterial TTR estimation usually assume that path travel time follows a certain distribution, with less consideration about segment correlations. However, the conventional approach is usually unrealistic because an important feature of urban arterial is the dependent structure of travel times on continuous segments. In this study, a copula-based approach that incorporates the stochastic characteristics of segments travel time is proposed to model arterial travel time distribution (TTD), which serves as a basis for TTR quantification. First, segments correlation is empirically analyzed and different types of copula models are examined. Then, fitting marginal distributions for segment TTD is conducted by parametric and non-parametric regression analysis, respectively. Based on the estimated parameters of the models, the best-fitting copula is determined in terms of the goodness-of-fit tests. Last, the model is examined at two study sites with AVI data and NGSIM trajectory data, respectively. The results of path TTD estimation demonstrate the advantage of the proposed copula-based approach, compared with the convolution model without capturing segments correlation and the empirical distribution fitting methods. Furthermore, when considering the segments correlation effect, it was found that the estimated path TTR is more accurate than that by the convolution model.  相似文献   

8.
An assumption that pervades the current transportation system reliability assessment literature is that probability distributions of the sources of uncertainty are known explicitly. However, this distribution may be unavailable (inaccurate) in reality as we may have no (insufficient) data to calibrate the distribution. In this paper we relax this assumption and present a new method to assess travel time reliability that is distribution-free in the sense that the methodology only requires that the first N moments (where N is a user-specified positive integer) of the travel time to be known and that the travel times reside in a set of bounded and known intervals. Because of our modeling approach, all sources of uncertainty are automatically accounted for, as long as they are statistically independent. Instead of deriving exact probabilities on travel times exceeding certain thresholds via computationally intensive methods, we develop semi-analytical probability inequalities to quickly (i.e. within a fraction of a second) obtain upper bounds on the desired probability. Numerical experiments suggest that the inclusion of higher order moments can potentially significantly improve the bounds. The case study also demonstrates that the derived bounds are nontrivial for a large range of travel time values.  相似文献   

9.
Because individuals may misperceive travel time distributions, using the implied reduced form of the scheduling model might fall short of capturing all costs of travel time variability. We reformulate a general scheduling model employing rank-dependent utility theory and derive two special cases as econometric specifications to study these uncaptured costs. It is found that reduced-form expected cost functions still have a mean–variance form when misperception is considered, but the value of travel time variability is higher. We estimate these two models with stated-preference data and calculate the empirical cost of misperception. We find that: (i) travelers are mostly pessimistic and thus tend to choose departure times too early to achieve a minimum cost, (ii) scheduling preferences elicited using a stated-choice method can be relatively biased if probability weighting is not considered, and (iii) the extra cost of misperceiving the travel time distribution might be nontrivial when time is valued differently over the time of day and is substantial for some people.  相似文献   

10.
This study proposes an approach to modeling the effects of daily roadway conditions on travel time variability using a finite mixture model based on the Gamma–Gamma (GG) distribution. The GG distribution is a compound distribution derived from the product of two Gamma random variates, which represent vehicle-to-vehicle and day-to-day variability, respectively. It provides a systematic way of investigating different variability dimensions reflected in travel time data. To identify the underlying distribution of each type of variability, this study first decomposes a mixture of Gamma–Gamma models into two separate Gamma mixture modeling problems and estimates the respective parameters using the Expectation–Maximization (EM) algorithm. The proposed methodology is demonstrated using simulated vehicle trajectories produced under daily scenarios constructed from historical weather and accident data. The parameter estimation results suggest that day-to-day variability exhibits clear heterogeneity under different weather conditions: clear versus rainy or snowy days, whereas the same weather conditions have little impact on vehicle-to-vehicle variability. Next, a two-component Gamma–Gamma mixture model is specified. The results of the distribution fitting show that the mixture model provides better fits to travel delay observations than the standard (one-component) Gamma–Gamma model. The proposed method, the application of the compound Gamma distribution combined with a mixture modeling approach, provides a powerful and flexible tool to capture not only different types of variability—vehicle-to-vehicle and day-to-day variability—but also the unobserved heterogeneity within these variability types, thereby allowing the modeling of the underlying distributions of individual travel delays across different days with varying roadway disruption levels in a more effective and systematic way.  相似文献   

11.
This paper derives a measure of travel time variability for travellers equipped with scheduling preferences defined in terms of time-varying utility rates, and who choose departure time optimally. The corresponding value of travel time variability is a constant that depends only on preference parameters. The measure is unique in being additive with respect to independent parts of a trip. It has the variance of travel time as a special case. Extension is provided to the case of travellers who use a scheduled service with fixed headway.  相似文献   

12.
Travel time is an effective measure of roadway traffic conditions. The provision of accurate travel time information enables travelers to make smart decisions about departure time, route choice and congestion avoidance. Based on a vast amount of probe vehicle data, this study proposes a simple but efficient pattern-matching method for travel time forecasting. Unlike previous approaches that directly employ travel time as the input variable, the proposed approach resorts to matching large-scale spatiotemporal traffic patterns for multi-step travel time forecasting. Specifically, the Gray-Level Co-occurrence Matrix (GLCM) is first employed to extract spatiotemporal traffic features. The Normalized Squared Differences (NSD) between the GLCMs of current and historical datasets serve as a basis for distance measurements of similar traffic patterns. Then, a screening process with a time constraint window is implemented for the selection of the best-matched candidates. Finally, future travel times are forecasted as a negative exponential weighted combination of each candidate’s experienced travel time for a given departure. The proposed approach is tested on Ring 2, which is a 32km urban expressway in Beijing, China. The intermediate procedures of the methodology are visualized by providing an in-depth quantitative analysis on the speed pattern matching and examples of matched speed contour plots. The prediction results confirm the desirable performance of the proposed approach and its robustness and effectiveness in various traffic conditions.  相似文献   

13.
In this paper we consider aggregation technique to reduce the complexity of large-scale traffic network. In particular, we consider the city of Grenoble and show that, by clustering adjacent sections based on a similarity of speed condition, it is possible to cut down the complexity of the network without loosing crucial and intrinsic information. To this end, we consider travel time computation as a metric of comparison between the original graph and the reduced one: for each cluster we define four attributes (average speed, primary and secondary length and heading) and show that, in case of an aggregation rate of 95%, these attributes are sufficient in order to maintain the travel time error below the 25%.  相似文献   

14.
Day-to-day travel time variability plays a significant role in travel time reliability. Nowadays, travelers not only seek to minimize their travel time on average, but also value its variation. The variation in the mean and the variance of travel time (across days, for the same departure time) has not been thoroughly investigated. A temporary decrease in capacity (e.g. congestion caused by an active bottleneck) leads to a quite significant difference in the variance of travel time for congestion onset and offset periods. This phenomenon results in hysteresis loops where the departure time periods in congestion offset exhibit a higher travel time variance than the ones in congestion onset with the same mean travel time. The aim of this paper is to identify empirical implications that yield to the hysteresis phenomenon in day-to-day travel times. First, empirical hysteresis loop observations are provided from two different freeway sites. Second, we investigate the potential link with the hysteresis observed in traffic networks on macroscopic fundamental diagram (MFD). Third, we build a piecewise linear function that models the evolution of travel time within the day. This allows us to decompose the problem into its components, e.g. start time of congestion, peak travel time, etc. These components, along with their probability distribution functions, are employed in a Monte Carlo simulation model to investigate their partial effects on the existence of hysteresis. Correlation among critical variables is the most influential factor in this phenomenon, which should be further investigated regarding traffic flow and traffic equilibrium principles.  相似文献   

15.
Estimates of road speeds have become commonplace and central to route planning, but few systems in production provide information about the reliability of the prediction. Probabilistic forecasts of travel time capture reliability and can be used for risk-averse routing, for reporting travel time reliability to a user, or as a component of fleet vehicle decision-support systems. Many of these uses (such as those for mapping services like Bing or Google Maps) require predictions for routes in the road network, at arbitrary times; the highest-volume source of data for this purpose is GPS data from mobile phones. We introduce a method (TRIP) to predict the probability distribution of travel time on an arbitrary route in a road network at an arbitrary time, using GPS data from mobile phones or other probe vehicles. TRIP captures weekly cycles in congestion levels, gives informed predictions for parts of the road network with little data, and is computationally efficient, even for very large road networks and datasets. We apply TRIP to predict travel time on the road network of the Seattle metropolitan region, based on large volumes of GPS data from Windows phones. TRIP provides improved interval predictions (forecast ranges for travel time) relative to Microsoft’s engine for travel time prediction as used in Bing Maps. It also provides deterministic predictions that are as accurate as Bing Maps predictions, despite using fewer explanatory variables, and differing from the observed travel times by only 10.1% on average over 35,190 test trips. To our knowledge TRIP is the first method to provide accurate predictions of travel time reliability for complete, large-scale road networks.  相似文献   

16.
In probe-based traffic monitoring systems, traffic conditions can be inferred based on the position data of a set of periodically polled probe vehicles. In such systems, the two consecutive polled positions do not necessarily correspond to the end points of individual links. Obtaining estimates of travel time at the individual link level requires the total traversal time (which is equal to the polling interval duration) be decomposed. This paper presents an algorithm for solving the problem of decomposing the traversal time to times taken to traverse individual road segments on the route. The proposed algorithm assumes minimal information about the network, namely network topography (i.e. links and nodes) and the free flow speed of each link. Unlike existing deterministic methods, the proposed solution algorithm defines a likelihood function that is maximized to solve for the most likely travel time for each road segment on the traversed route. The proposed scheme is evaluated using simulated data and compared to a benchmark deterministic method. The evaluation results suggest that the proposed method outperforms the bench mark method and on average improves the accuracy of the estimated link travel times by up to 90%.  相似文献   

17.
This paper presents results from a research case study that examined the distribution of travel time of origin–destination (OD) pairs on a transportation network under incident conditions. Using a transportation simulation dynamic traffic assignment (DTA) model, incident on a transportation network is executed under normal conditions, incident conditions without traveler information availability, and incident conditions assuming that users had perfect knowledge of the incident conditions and could select paths to avoid the incident location. The results suggest that incidents have a different impact on different OD pairs. The results confirm that an effective traveler information system has the potential to ease the impacts of incident conditions network wide. Yet it is also important to note that the use of information may detriment some OD pairs while benefiting other OD pairs. The methodology demonstrated in this paper provides insights into the usefulness of embedding a fully calibrated DTA model into the analysis tools of a traffic management and information center.  相似文献   

18.
Travel time reliability is a fundamental factor in travel behavior. It represents the temporal uncertainty experienced by travelers in their movement between any two nodes in a network. The importance of the time reliability depends on the penalties incurred by the travelers. In road networks, travelers consider the existence of a trip travel time uncertainty in different choice situations (departure time, route, mode, and others). In this paper, a systematic review of the current state of research in travel time reliability, and more explicitly in the value of travel time reliability is presented. Moreover, a meta-analysis is performed in order to determine the reasons behind the discrepancy among the reliability estimates.  相似文献   

19.
20.
Significant efforts have been made in modeling a travel time distribution and establishing measures of travel time reliability (TTR). However, the literature on evaluating the factors affecting TTR is not well established. Accordingly, this paper presents an empirical analysis to determine potential factors that are associated with TTR. This study mainly applies the Bayesian Networks model to assess the probabilistic association between road geometry, traffic data, and TTR. The results from this model reveal that land use characteristics, intersection factors, and posted speed limits are directly associated with TTR. Evaluating the strength of the association between TTR and the directly related variables, the log odds ratio analysis indicates that the land use factor has the highest impact (0.83) followed by the intersection factor (0.57). The findings from this study can provide valuable resources to planners and traffic operators in their decision-making to improve TTR with quantitative evidence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号