首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
  总被引:1,自引:0,他引:1  
This paper describes an analytical process that computes the optimal operating successions of a rail vehicle to minimize energy consumption. Rising energy prices and environmental concerns have made energy conservation a high priority for transportation operations. The cost of energy consumption makes up a large portion of the Operation and Maintenance (O&M) costs of transit especially rail transit systems. Energy conservation or reduction in energy cost may be one of the effective ways to reduce transit operating cost, therefore improve the efficiency of transit operations.From a theoretical point of view, the problem of energy efficient train control can be formulated as one of the functions of Optimal Control Theory. However, the classic numerical optimization methods such as discrete method of optimum programming are too slow to be used in an on-board computer even with the much improved computation power, today. The contribution of this particular research is the analytical solution that gives the sequence of optimal controls and equations to find the control change points. As a result, a calculation algorithm and a computer program for energy efficient train control has been developed. This program is also capable of developing energy efficient operating schedules by optimizing distributions of running time for an entire route or any part of rail systems.We see the major application of the proposed algorithms in fully or partially automated Train Control Systems. The modern train control systems, often referred as “positive” train control (PTC), have collected a large amount of information to ensure safety of train operations. The same data can be utilized to compute the optimum controls on-board to minimize energy consumption based on the algorithms proposed in this paper. Most of the input data, such as track plan, track profile, traction and braking characteristics, speed limits and required trip time are located in an on-board database and/or they can be transmitted via radio link to be processed by the proposed algorithm and program.  相似文献   

2.
Devising effective management strategies to relieve dependency on private vehicles, i.e. cars and motorcycles, depends on the ability to accurately and carefully examine the effects of corresponding strategies. Disaggregate choice models regarding the ownership, type and usage of cars and motorcycles are required to achieve this. Consequently, this study proposes integrated car and motorcycle models based on a large-scale questionnaire survey of Taiwanese owners of cars and motorcycles, respectively. Incorporating gas mileage and emission coefficients for different types of cars and motorcycles into the proposed models can enable the estimation and comparison of reductions in energy consumption and emissions under various management strategies. To demonstrate the applicability of the proposed integrated models, scenarios involving 10% and 30% increases in gas prices are analyzed and compared. The results indicate that gas price elasticities of cars and motorcycles are low, ranging from 0.47 to 0.50 for cars and 0.11 for motorcycles. Additionally, a high ratio of discouraged car users shifting to use of motorcycles neutralizes the effects of increased gas price in reducing energy consumption and emissions. Pollution of CO and HC even slightly increased because motorcycles are much more polluting in terms of CO and HC. At last, the reductions of energy consumption and emissions under 10% and 30% increase (or decrease) in other manipulating variables are also estimated and compared. The countermeasures for reducing ownership and usage of cars and motorcycles are then recommended accordingly.  相似文献   

3.
    
A new timetable must be calculated in real-time when train operations are perturbed. Although energy consumption is becoming a central issue both from the environmental and economic perspective, it is usually neglected in the timetable recalculation. In this paper, we formalize the real-time Energy Consumption Minimization Problem (rtECMP). It finds in real-time the driving regime combination for each train that minimizes energy consumption, respecting given routing and precedences between trains. In the possible driving regime combinations, train routes are split in subsections for which one of the regimes resulting from the Pontryagin’s Maximum Principle is to be chosen. We model the trade-off between minimizing energy consumption and total delay by considering as objective function their weighted sum. We propose an algorithm to solve the rtECMP, based on the solution of a mixed-integer linear programming model. We test this algorithm on the Pierrefitte-Gonesse control area, which is a critical area in France with dense mixed traffic. The results show that the problem is tractable and an optimal solution of the model tackled can often be found in real-time for most instances.  相似文献   

4.
    
Speed variations are considered as an alternative for reducing fuel consumption during the use phase of passenger cars. It explores vehicle engine operating zones with lower fuel consumption, thus making possible a reduction in fuel consumption when compared to constant speed operation. In this paper, we present an evaluation of two conditions of speed variations: 50–70 km/h and 90–110 km/h using numerical simulations and controlled tests. The controlled tests performed on a test track by a professional pilot show that a reduction in fuel consumption is achievable with a conventional gasoline passenger car, with no adaptations for realizing speed variations. Numerical simulations based on a backward quasi-static powertrain model are used to evaluate the potential of speed variations for reducing fuel consumption in other speed variation conditions. When deceleration is performed with gear in neutral position, simulations show that speed variations are always correlated to a lower fuel consumption. This was suspected through previous numerical tests or evaluation on test bench but not in controlled tests conditions.  相似文献   

5.
    
The fact that electric vehicles (EVs) are characterized by relatively short driving range not only signifies the importance of routing applications to compute energy efficient or optimal paths, but also underlines the necessity for realistic simulation models to estimate the energy consumption of EVs. To this end, the present paper introduces an accurate yet computationally efficient energy consumption model for EVs, based on generic high-level specifications and technical characteristics. The proposed model employs a dynamic approach to simulate the energy recuperation capability of the EV and takes into account motor overload conditions to represent the vehicle performance over highly demanding route sections. To validate the simulation model developed in this work, its output over nine typical driving cycles is compared to that of the Future Automotive Systems Technology Simulator (FASTSim), which is a simulation tool tested on the basis of real-world data from existing vehicles. The validation results show that the mean absolute error (MAE) of cumulative energy consumption is less than 45 W h on average, while the computation time to perform each driving cycle is of the order of tens of milliseconds, indicating that the developed model strikes a reasonable balance between efficacy of representation and computational efficiency. Comprehensive simulation results are presented in order to exemplify the key features of the model and analyze its output under specific highly aggressive driving cycles for road gradients ranging from −6% to 6%, in support of its usability as a practical solution for estimating the energy consumption in EV routing applications.  相似文献   

6.
    
Regenerative braking is an energy recovery mechanism that converts the kinetic energy during braking into electricity, also known as regenerative energy. In general, most of the regenerative energy is transmitted backward along the pantograph and fed back into the overhead contact line. To reduce the trains’ energy consumption, this paper develops a scheduling approach to coordinate the arrivals and departures of all trains located in the same electricity supply interval so that the energy regenerated from braking trains can be more effectively utilized to accelerate trains. Firstly, we formulate an integer programming model with real-world speed profiles to minimize the trains’ energy consumption with dwell time control. Secondly, we design a genetic algorithm and an allocation algorithm to find a good solution. Finally, we present numerical examples based on the real-life operation data from the Beijing Metro Yizhuang Line in Beijing, China. The results show that the proposed scheduling approach can reduce energy consumption by 6.97% and save about 1,054,388 CNY (or 169,223 USD) each year in comparison with the current timetable. Compared to the cooperative scheduling (CS) approach, the proposed scheduling approach can improve the utilization of regenerative energy by 36.16% and reduce the total energy consumption by 4.28%.  相似文献   

7.
    
This paper studies the heterogeneous energy cost and charging demand impact of autonomous electric vehicle (EV) fleet under different ambient temperature. A data-driven method is introduced to formulate a two-dimensional grid stochastic energy consumption model for electric vehicles. The energy consumption model aids in analyzing EV energy cost and describing uncertainties under variable average vehicle trip speed and ambient temperature conditions. An integrated eco-routing and optimal charging decision making framework is designed to improve the capability of autonomous EV’s trip level energy management in a shared fleet. The decision making process helps to find minimum energy cost routes with consideration of charging strategies and travel time requirements. By taking advantage of derived models and technologies, comprehensive case studies are performed on a data-driven simulated transportation network in New York City. Detailed results show us the heterogeneous energy impact and charging demand under different ambient temperature. By giving the same travel demand and charging station information, under the low and high ambient temperature within each month, there exist more than 20% difference of overall energy cost and 60% difference of charging demand. All studies will help to construct sustainable infrastructure for autonomous EV fleet trip level energy management in real world applications.  相似文献   

8.
    
This study investigates the energy consumption impact of route selection on battery electric vehicles (BEVs) using empirical second-by-second Global Positioning System (GPS) commute data and traffic micro-simulation data. Drivers typically choose routes that reduce travel time and therefore travel cost. However, BEVs’ limited driving range makes energy efficient route selection of particular concern to BEV drivers. In addition, BEVs’ regenerative braking systems allow for the recovery of energy while braking, which is affected by route choices. State-of-the-art BEV energy consumption models consider a simplified constant regenerative braking energy efficiency or average speed dependent regenerative braking factors. To overcome these limitations, this study adopted a microscopic BEV energy consumption model, which captures the effect of transient behavior on BEV energy consumption and recovery while braking in a congested network. The study found that BEVs and conventional internal combustion engine vehicles (ICEVs) had different fuel/energy-optimized traffic assignments, suggesting that different routings be recommended for electric vehicles. For the specific case study, simulation results indicate that a faster route could actually increase BEV energy consumption, and that significant energy savings were observed when BEVs utilized a longer travel time route because energy is regenerated. Finally, the study found that regenerated energy was greatly affected by facility types and congestion levels and also BEVs’ energy efficiency could be significantly influenced by regenerated energy.  相似文献   

9.
The Pollution-Routing Problem   总被引:1,自引:0,他引:1  
The amount of pollution emitted by a vehicle depends on its load and speed, among other factors. This paper presents the Pollution-Routing Problem (PRP), an extension of the classical Vehicle Routing Problem (VRP) with a broader and more comprehensive objective function that accounts not just for the travel distance, but also for the amount of greenhouse emissions, fuel, travel times and their costs. Mathematical models are described for the PRP with or without time windows and computational experiments are performed on realistic instances. The paper sheds light on the tradeoffs between various parameters such as vehicle load, speed and total cost, and offers insight on economies of ‘environmental-friendly’ vehicle routing. The results suggest that, contrary to the VRP, the PRP is significantly more difficult to solve to optimality but has the potential of yielding savings in total cost.  相似文献   

10.
Increasing concerns on supply chain sustainability have given birth to the concept of closed-loop supply chain. Closed-loop supply chains include the return processes besides forward flows to recover the value from the customers or end-users. Vendor Managed Inventory (VMI) systems ensure collaborative relationships between a vendor and a set of customers. In such systems, the vendor takes on the responsibility of product deliveries and inventory management at customers. Product deliveries also include reverse flows of returnable transport items. The execution of the VMI policy requires vendor to deal with a Closed-loop Inventory Routing Problem (CIRP) consisting of its own forward and backward routing decisions, and inventory decisions of customers. In CIRP literature, traditional assumptions of disregarding reverse logistic operations, knowing beforehand distribution costs between nodes and customers demand, and managing single product restrict the usage of the proposed models in current food logistics systems. From this point of view, the aim of this research is to enhance the traditional models for the CIRP to make them more useful for the decision makers in closed-loop supply chains. Therefore, we propose a probabilistic mixed-integer linear programming model for the CIRP that accounts for forward and reverse logistics operations, explicit fuel consumption, demand uncertainty and multiple products. A case study on the distribution operations of a soft drink company shows the applicability of the model to a real-life problem. The results suggest that the proposed model can achieve significant savings in total cost and thus offers better support to decision makers.  相似文献   

11.
    
Drones are one of the most intensively studied technologies in logistics in recent years. They combine technological features matching current trends in transport industry and society like autonomy, flexibility, and agility. Among the various concepts for using drones in logistics, parcel delivery is one of the most popular application scenarios. Companies like Amazon test drones particularly for last-mile delivery intending to achieve both reducing total cost and increasing customer satisfaction by fast deliveries. As drones are electric vehicles, they are also often claimed to be an eco-friendly mean of transportation.In this paper an energy consumption model for drones is proposed to describe the energy demand for drone deliveries depending on environmental conditions and the flight pattern. The model is used to simulate the energy demand of a stationary parcel delivery system which serves a set customers from a depot. The energy consumed by drones is compared to the energy demand of Diesel trucks and electric trucks serving the same customers from the same depot.The results indicate that switching to a solely drone-based parcel delivery system is not worthwhile from an energetic perspective in most scenarios. A stationary drone-based parcel delivery system requires more energy than a truck-based parcel delivery system particularly in urban areas where customer density is high and truck tours are comparatively short. In rather rural settings with long distances between customers, a drone-based parcel delivery system creates an energy demand comparable to a parcel delivery system with electric trucks provided environmental conditions are moderate.  相似文献   

12.
The use of electric vehicles (EVs) is viewed as an attractive option to reduce CO2 emissions and fuel consumption resulted from transport sector, but the popularization of EVs has been hindered by the cruising range limitation and the charging process inconvenience. Energy consumption characteristics analysis is the important foundation to study charging infrastructures locating, eco-driving behavior and energy saving route planning, which are helpful to extend EVs’ cruising range. From a physical and statistical view, this paper aims to develop a systematic energy consumption estimation approach suitable for EV actual driving cycles. First, by employing the real second-by-second driving condition data collected on typical urban travel routes, the energy consumption characteristics analysis is carried out specific to the microscopic driving parameters (instantaneous speed and acceleration) and battery state of charge (SOC). Then, based on comprehensive consideration of the mechanical dynamics characteristics and electric machine system of the EVs, a set of energy consumption rate estimation models are established under different operation modes from a statistical perspective. Finally, the performance of proposed model is fully evaluated by comparing with a conventional energy consumption estimation method. The results show that the proposed modeling approach represents a significant accuracy improvement in the estimation of real-world energy consumption. Specifically, the model precision increases by 25.25% in decelerating mode compared to the conventional model, while slight improvement in accelerating and cruising mode with desirable goodness of fit.  相似文献   

13.
    
Electric Freight Vehicles (EFVs) are a promising and increasingly popular alternative to conventional trucks in urban pickup/delivery operations. A key concerned research topic is to develop trip-based Tank-to-Wheel (TTW) analyses/models for EFVs energy consumption: notably, there are just a few studies in this area. Leveraging an earlier research on passenger electric vehicles, this paper aims at filling this gap by proposing a microscopic backward highly-resolved power-based EFVs energy consumption model (EFVs-ECM). The model is estimated and validated against real-world data, collected on a fleet of five EFVs in the city centre of Rome, for a total of 144 observed trips between subsequent pickup/delivery stops. Different model specifications are tested and contrasted, with promising results, in line with previous findings on electric passenger vehicles.  相似文献   

14.
The performance of container terminals needs to be improved to handle the growth of transported containers and maintain port sustainability. This paper provides a methodology for improving the handling capacity of an automated container terminal in an energy-efficient way. The behavior of a container terminal is considered as consisting of a higher level and a lower level represented by discrete-event dynamics and continuous-time dynamics, respectively. These dynamics represent the behavior of a large number of terminal equipment. The dynamics need to be controlled. For controlling the higher level dynamics, a minimal makespan problem is solved. For this, the minimal time required by equipment for performing an operation at the lower level is needed. The minimal time for performing an operation at the lower level is obtained using Pontryagin’s Minimum Principle. The actual operation time allowed by the higher level for processing an operation at the lower level is subsequently determined by a scheduling algorithm at the higher level. Given an actual operation time, the lower level dynamics are controlled using optimal control to achieve minimal energy consumption while respecting the time constraint. Simulation studies illustrate how energy-efficient management of equipment for the minimal makespan could be obtained using the proposed methodology.  相似文献   

15.
    
The environmental and economic burdens of various pavement construction strategies are evaluated in this study. A partial life-cycle approach was used to determine the environmental and economic benefits of asphalt concrete and Portland concrete mix designs as well as pavement-related pay items. Approximately 920 designs were assessed to determine the upstream energy consumption and global warming potential (GWP) of producing these mixes. In general, it was found that transportation hauling distances as well as asphalt binder type and production imposed the greatest variability on the environmental and economic costs of the mixes. In many cases, these variabilities were seen to reduce some of the benefits from using increased recycled content. A similar analysis was performed for pay items where it was found that the contribution of environmental and economic impacts to a project followed a trend with upper pavement layers having the greatest impact, followed by subsequently lower layers, and finally earth exaction and preparation. A cost effectiveness (CE) analysis was then conducted for 18 sustainable strategies, the majority of which had, on average, cost savings as well as environmental savings for both energy and GWP at the mix design level. Overall, this study systematically used common reference units (i.e., mix designs and pay items) from the industry to assess general trends, inconsistencies, and implications from using sustainable strategies in pavement construction.  相似文献   

16.
    
This paper presents a decision analysis technique to allow highway agencies to assess the tradeoffs between costs, condition and energy consumption. It is shown how the entire feasible solution space can be evaluated between multiple stakeholders with differing values to assess the desirability of the outcomes resulting from infrastructure management decisions. Furthermore, an example network-level analysis is presented using data from the Virginia Department of Transportation. The example analysis clearly shows a tradeoff between the most cost effective outcomes (i.e., minimizing the cost divided by the condition) and the outcomes where the energy consumption is minimized, and how decision analysis should account for this tradeoff. The results of the method presented in this paper show that various pavement management alternatives can be represented in terms of desirability, and that this desirability can assist the decision maker with making decisions about performance goals and targets.  相似文献   

17.
Globalization, greenhouse gas emissions and energy concerns, emerging vehicle technologies, and improved statistical modeling capabilities make the present moment an opportune time to revisit aggregate vehicle miles traveled (VMT), energy consumption, and greenhouse gas (GHG) emissions forecasting for passenger transportation. Using panel data for the 48 continental states during the period 1998-2008, the authors develop simultaneous equation models for predicting VMT on different road functional classes and examine how different technological solutions and changes in fuel prices can affect passenger VMT. Moreover, a random coefficient panel data model is developed to estimate the influence of various factors (such as demographics, socioeconomic variables, fuel tax, and capacity) on the total amount of passenger VMT in the United States. To assess the influence of each significant factor on VMT, elasticities are estimated. Further, the authors investigate the effect of different policies governing fuel tax and population density on future energy consumption and GHG emissions. The presented methodology and estimation results can assist transportation planners and policy-makers in determining future energy and transportation infrastructure investment needs.  相似文献   

18.
    
This work investigates the energy factors for fuel conversion from the analysis of brake specific fuel consumption (BSFC) maps of a sample of 15 engines, representative of 75% of current models available in the Brazilian market. The method also employs the engine driving patterns of power output versus crankshaft speed obtained from bench dynamometer tests. The energy factors obtained from the engine analysis was validated against experiments carried out with two production vehicles in laboratory tests following the 1975 US Federal Test Procedure (FTP-75) procedure and road tests following 16 different urban and highway routes. The fuels used in the tests were hydrous ethanol (E100, 6 v/v % water) and a blend of 22 v/v % anhydrous ethanol and 78 v/v % gasoline (E22). The energy factors found from the 3D engine BSFC map analysis were higher than those obtained from the Willans line, currently adopted as a standard, by 52% for E22 and 57% for E100. The results from the 3D engine BFSC maps and the first vehicle following the FTP-75 cycle and 15 road routes were similar, also close to the results from the second vehicle, qualifying them to be representative of modern flexible fuel spark ignition engines and vehicles.  相似文献   

19.
The article evaluates the environmental benefits of electric vehicles using well-to-wheel analysis in the Czech Republic. The power consumption per kilometer is determined from the combined cycle of the New European Driving Cycle. Using information from the integrated registry of polluters and mandatory disclosures of the CEZ company the specific harmful emissions production per 1 kW h of electricity is determined. The combination of electricity consumed and the production of harmful emissions per 1 kW h of electricity determine the indirect harmful emissions of an electric vehicle per kilometer. Computer simulation of the indirect production of harmful emissions is performed on the Mitsubishi MiEV engine, typical for an electric vehicle.  相似文献   

20.
Use of electric vehicles (EVs) has been viewed by many as a way to significantly reduce oil dependence, operate vehicles more efficiently, and reduce carbon emissions. Due to the potential benefits of EVs, the federal and local governments have allocated considerable funding and taken a number of legislative and regulatory steps to promote EV deployment and adoption. With this momentum, it is not difficult to see that in the near future EVs could gain a significant market penetration, particularly in densely populated urban areas with systemic air quality problems. We will soon face one of the biggest challenges: how to improve efficiency for EV transportation system? This research takes the first step in tackling this challenge by addressing a fundamental issue, i.e. how to measure and estimate EVs’ energy consumption. In detail, this paper first presents a system which can collect in-use EV data and vehicle driving data. This system then has been installed in an EV conversion vehicle built in this research as a test vehicle. Approximately 5 months of EV data have been collected and these data have been used to analyze both EV performance and driver behaviors. The analysis shows that the EV is more efficient when driving on in-city routes than driving on freeway routes. Further investigation of this particular EV driver’s route choice behavior indicates that the EV user tries to balance the trade-off between travel time and energy consumption. Although more data are needed in order to generalize this finding, this observation could be important and might bring changes to the traffic assignment for future transportation system with a significant share of EVs. Additionally, this research analyzes the relationships among the EV’s power, the vehicle’s velocity, acceleration, and the roadway grade. Based on the analysis results, this paper further proposes an analytical EV power estimation model. The evaluation results using the test vehicle show that the proposed model can successfully estimate EV’s instantaneous power and trip energy consumption. Future research will focus on applying the proposed EV power estimation model to improve EVs’ energy efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号