共查询到20条相似文献,搜索用时 0 毫秒
2.
This paper questions the relevance of microscopic traffic models for estimating the impact of traffic strategies on fuel consumption. Urban driving cycles from the ARTEMIS database are simplified into piecewise linear speed profiles to mimic the classical outputs of microscopic traffic flow models. Fuel consumption is estimated for real and simplified trajectories and links between kinematics and the fuel consumption errors are investigated. Simplifying trajectories causes fuel consumption underestimation, from −1.2 to −5.2% on average according to the level of simplification; errors can approach −20% for some cycles. A focus on kinematic phases indicates that the maximum speed reached and the time decelerating are the main influences on fuel consumption. Finally, in the case where maximum speeds are estimated correctly, it is shown that errors committed at each kinematic phase when acceleration distributions are approximated by their mean values, converge towards small errors over complete cycles. A method is developed to quantify and reduce these errors. 相似文献
3.
The zone system used for freight data collection and the geographic resolution of published data has a significant impact on analysis and planning. The majority of existing freight model zones are created in an ad hoc way. In this paper, a new model-based design method is introduced to develop freight zones for the continental USA. It focuses on two methodology issues: (1) the criteria that represent the desired properties of a zone system and (2) the constraints that govern the shape, size, and continuity of zones. The method is applied to the continental USA by optimizing an interzonal travel distance weighted by freight flows using county-level freight data. Several optimal national-level freight zone systems with different numbers of zones are developed. The results indicate that a 300-zone system provides a balance between the number of zones and optimization measures where the currently available public freight data are provided with approximately 100 zones. 相似文献
4.
Fuel consumption models have been widely used to predict fuel consumption and evaluate new vehicle technologies. However, due to the uncertainty and high nonlinearity of fuel systems, it is difficult to develop an accurate fuel consumption model for real-time calculations. Additionally, whether the developed fuel consumption models are suitable for eco-routing and eco-driving systems is unknown. To address these issues, a systematic review of fuel consumption models and the factors that influence fuel economy is presented. First, the primary factors that affect fuel economy, including travel-related, weather-related, vehicle-related, roadway-related, traffic-related, and driver-related factors, are discussed. Then, state-of-the-art fuel consumption models developed after 2000 are summarized and classified into three broad types based on transparency, i.e., white-box, grey-box and black-box models. Consequently, the limitations and potential possibilities of fuel consumption modelling are highlighted in this review. 相似文献
5.
The United States transportation sector consumes 5 billion barrels of petroleum annually to move people and freight around the country by car, truck, train, ship and aircraft, emitting significant greenhouse gases in the process. Making the transportation system more sustainable by reducing these emissions and increasing the efficiency of this multimodal system can be achieved through several vehicle-centric strategies. We focus here on one of these strategies – reducing vehicle mass – and on collecting and developing a set of physics-based expressions to describe the effect of vehicle mass reduction on fuel consumption across transportation modes in the U.S. These expressions allow analysts to estimate fuel savings resulting from vehicle mass reductions (termed fuel reduction value, FRV), across modes, without resorting to specialized software or extensive modeling efforts, and to evaluate greenhouse gas emission and cost implications of these fuel savings. We describe how FRV differs from fuel intensity (FI) and how to properly use both of these metrics, and we provide a method to adjust FI based on mass changes and FRV. Based on this work, we estimate that a 10% vehicle mass reduction (assuming constant payload mass) results in a 2% improvement in fuel consumption for trains and light, medium, and heavy trucks, 4% for buses, and 7% for aircraft. When a 10% vehicle mass reduction is offset by an increase in an equivalent mass of payload, fuel intensity (fuel used per unit mass of payload) increases from 6% to 23%, with the largest increase being for aircraft. 相似文献
6.
The present work compares, on a fundamental basis, the performance and emissions of a diesel-engined large van running on eight legislated driving cycles, namely the European NEDC, the U.S. FTP-75, HFET, US06, LA-92 and NYCC, the Japanese JC08 and the Worldwide WLTC 3-2. It aims to identify differences and similarities between various influential driving cycles valid in the world, and correlate important cycle metrics with vehicle exhaust emissions. The results derive from a computational code based on an engine mapping approach, with experimentally derived correction coefficients applied to account for transient discrepancies; the code is coupled to a comprehensive vehicle model. Soot as well as nitrogen monoxide are the examined pollutants. Only the driving cycle schedule is under investigation in this work, and not the whole test procedure, in order to identify vehicle speed (transient) effects of the individual cycles only. The recently developed WLTC 3-2 is the cycle with a very broad and at the same time dense coverage of the vehicle’s/engine’s operating activity, being thus particularly representative of ‘average’ real-world driving. Even broader is the distribution of the US06, whereas particularly thin and narrow that of the modal NEDC. It is also revealed that the more transient cycles, e.g. the NYCC or the US06, are also the ones with the highest amount of engine-out pollutant emissions and energy consumption. Relative positive acceleration and stops per km are found to correlate very well with energy and fuel consumption and all emitted pollutants. 相似文献
7.
This article presents a fuel consumption model, SEFUM (Semi Empirical Fuel Use Modeling), and its comparison with three models from the literature on a 600 km experimental database. This model is easy to calibrate with only a few required parameters that are provided by car manufacturers. The test database has been built from 21 drivers who drove in two conditions (normal and ecodriving) on a 15 km trip. For the model evaluation, three indicators have been selected: instantaneous fuel use root mean square error, cumulated error and computation time in order to evaluate the accuracy both in cumulated and instantaneous fuel use and to estimate computation time of each model. Results tend to prove that the model is able to compute rapidly (maximum of 1500 simulated kilometers under Matlab) in comparison to all other models while ensuring a high accuracy and precision for cumulated and instantaneous fuel use. 相似文献
8.
This paper presents a railroad energy efficiency model used to estimate the fuel economies for classes of trains transporting various commodities. Comparable procedures are used to estimate truck and waterway fuel consumption. The results show that coal unit trains are 4.5–5.0 times more energy efficient than movements in the largest trucks allowed in the eastern and western regions of the US, unit grain train movements in the central US are 4.6 times more fuel efficient, soda ash unit train and non-unit train shipments are 4.9 and 3.2 times more efficient, and ethanol unit train and non-unit train movements are 4.8 and 3.0 times more efficient. In terms of barge traffic, coal unit train and non-unit train are 1.3 and 0.9 times as energy efficient in the eastern US, grain unit train and non-unit train movements are 1.7 and 1.0 times more efficient from Minneapolis to the Gulf of Mexico, and grain unit train and non-unit train movements are 1.0 and 0.7 times more fuel efficient from the Upper Ohio River to the Gulf of Mexico. 相似文献
9.
Improved Air Traffic Management (ATM) leading to reduced en route and gate delay, greater predictability in flight planning, and reduced terminal inefficiencies has a role to play in reducing aviation fuel consumption. Air navigation service providers are working to quantify this role to help prioritize and justify ATM modernization efforts. In the following study we analyze actual flight-level fuel consumption data reported by a major U.S. based airline to study the possible fuel savings from ATM improvements that allow flights to better adhere to their planned trajectories both en route and in the terminal area. To do so we isolate the contribution of airborne delay, departure delay, excess planned flight time, and terminal area inefficiencies on fuel consumption using econometric techniques. The model results indicate that, for two commonly operated aircraft types, the system-wide averages of flight fuel consumption attributed to ATM delay and terminal inefficiencies are 1.0–1.5% and 1.5–4.5%, respectively. We quantify the fuel impact of predicted delay to be 10–20% that of unanticipated delay, reinforcing the role of flight plan predictability in reducing fuel consumption. We rank terminal areas by quantifying a Terminal Inefficiency metric based on the variation in terminal area fuel consumed across flights. Our results help prioritize ATM modernization investments by quantifying the trade-offs in planned and unplanned delays and identifying terminal areas with high potential for improvement. 相似文献
10.
This paper evaluates the effectiveness of feedback, based on In-Vehicle Data Recorders (IVDR), to improve driving behavior, increase driving safety, and reduce fuel consumption. We developed a framework for driving-behavior measurement, incorporating second-by-second data collected by IVDRs. IVDR units were installed in over 150 vehicles driven by more than 350 drivers for over a year. The experiment was divided into three stages. The first stage was a “blind”, control stage, with no feedback. The second stage incorporated verbal feedback given only to riskiest drivers. In the third stage all drivers received a bi-weekly written report about their driving performance. Safety events, such as braking, lateral acceleration or speeding, were recorded. Supplementary data regarding safety related events and fuel consumption were also collected. Safety incidents and fuel consumption were modeled as a function of IVDR measurement-based events, in order to identify which events best reflect safety incidents and excessive fuel consumption. Our results show that braking events best explain safety incidents, and all events together best explain fuel consumption. In addition, we found that for the riskiest drivers, feedback significantly reduced the IVDR events. Our models show that feedback can lead to a reduction of 8% in safety incidents, and 3–10% in fuel consumption, with a larger reduction obtained for large vehicles. 相似文献
11.
柴油机定速运行模糊控制策略研究 总被引:1,自引:0,他引:1
文章通过正交试验构建出柴油机定速运行的控制模型,并采用模糊控制方法,对该控制模型进行仿真分析。仿真结果表明,采用模糊控制策略的柴油发动机可以有效的使转速稳定在设定值范围内,控制效果显著。 相似文献
12.
The Time-Dependent Pollution-Routing Problem (TDPRP) consists of routing a fleet of vehicles in order to serve a set of customers and determining the speeds on each leg of the routes. The cost function includes emissions and driver costs, taking into account traffic congestion which, at peak periods, significantly restricts vehicle speeds and increases emissions. We describe an integer linear programming formulation of the TDPRP and provide illustrative examples to motivate the problem and give insights about the tradeoffs it involves. We also provide an analytical characterization of the optimal solutions for a single-arc version of the problem, identifying conditions under which it is optimal to wait idly at certain locations in order to avoid congestion and to reduce the cost of emissions. Building on these analytical results we describe a novel departure time and speed optimization algorithm for the cases when the route is fixed. Finally, using benchmark instances, we present results on the computational performance of the proposed formulation and on the speed optimization procedure. 相似文献
13.
Electric Freight Vehicles (EFVs) are a promising and increasingly popular alternative to conventional trucks in urban pickup/delivery operations. A key concerned research topic is to develop trip-based Tank-to-Wheel (TTW) analyses/models for EFVs energy consumption: notably, there are just a few studies in this area. Leveraging an earlier research on passenger electric vehicles, this paper aims at filling this gap by proposing a microscopic backward highly-resolved power-based EFVs energy consumption model (EFVs-ECM). The model is estimated and validated against real-world data, collected on a fleet of five EFVs in the city centre of Rome, for a total of 144 observed trips between subsequent pickup/delivery stops. Different model specifications are tested and contrasted, with promising results, in line with previous findings on electric passenger vehicles. 相似文献
14.
The aviation community is actively investigating initiatives to reduce aircraft fuel consumption from surface operations, as surface management strategies may face fewer implementation barriers compared with en route strategies. One fuel-saving initiative for the air transportation system is the possibility of holding aircraft at the gate, or the spot, until the point at which they can taxi unimpeded to the departure runway. The extent to which gate holding strategies have financial and environmental benefits hinges on the quantity of fuel that is consumed during surface operations. A pilot of an aircraft may execute the taxi procedure on a single engine or utilize different engine thrust rates during taxi because of a delay. In the following study, we use airline fuel consumption data to estimate aircraft taxi fuel consumption rates during the “unimpeded” and “delayed” portions of taxi time. We find that the fuel consumption attributed to a minute of taxi-out delay is less than that attributed to minute of unimpeded taxi time; for some aircraft types, the fuel consumption rate for a minute of taxi delay is half of that for unimpeded taxi. It is therefore not appropriate, even for rough calculations, to apply nominal taxi fuel consumption rates to convert delayed taxi-out time into fuel burn. On average we find that eliminating taxi delay would reduce overall flight fuel consumption by about 1%. When we consider the savings on an airport-by-airport basis, we find that for some airports the potential reduction from reducing taxi delay is as much as 2%. 相似文献
15.
This paper introduces the fleet size and mix pollution-routing problem which extends the pollution-routing problem by considering a heterogeneous vehicle fleet. The main objective is to minimize the sum of vehicle fixed costs and routing cost, where the latter can be defined with respect to the cost of fuel and CO2 emissions, and driver cost. Solving this problem poses several methodological challenges. To this end, we have developed a powerful metaheuristic which was successfully applied to a large pool of realistic benchmark instances. Several analyses were conducted to shed light on the trade-offs between various performance indicators, including capacity utilization, fuel and emissions and costs pertaining to vehicle acquisition, fuel consumption and drivers. The analyses also quantify the benefits of using a heterogeneous fleet over a homogeneous one. 相似文献
16.
The continuously variable hydromechanical transmission is an interesting solution for high power vehicles subject to frequent changes of speed, in which the comfort is a significant requirement.Despite their low average efficiency with respect to the mechanical transmissions, the hydromechanical transmissions allow to release the engine speed by the vehicle speed, and to open the possibility for the optimal control of the engine. It follows that the performance and emissions of the powertrain is heavily affected by the logic control.The aim of the paper is to investigate the emission reductions that can be obtained using a Power-Split transmission.Therefore, a hydromechanical transmission has been sized and tested on a 12-ton-city bus by using a one-dimensional model developed in an AMESim environment. Four different control strategies of the powertrain were applied to the model. The CUEDC-ME standard cycle for the characterization of emissions in heavy vehicles was used as a reference mission.The simulation results showed that the hydromechanical transmission reduces consumption or the emission levels with respect to the traditional transmission when managed according to appropriate control strategies. By means of emission values normalized with respect to the standard limits, it is possible to identify a control strategy that allows the reduction of emissions in every usage condition of the vehicle at the expense of a slight increase of consumption.The suggested procedure could help the manufacturer to satisfy the emission standard requirements. 相似文献
17.
In a case study of a Norwegian heavy-duty truck transport company, we analyzed data generated by the online fleet management system Dynafleet. The objective was to find out what influenced fuel consumption. We used a set of driving indicators as explanatory variables: load weight, trailer type, route, brake horsepower, average speed, automatic gearshift use, cruise-control use, use of more than 90% of maximum torque, a dummy variable for seasonal variation, use of running idle, use of driving in highest gear, brake applications, number of stops and rolling without engine load. We found, via multivariate regression analysis and corresponding mean elasticity analysis, that with driving on narrow mountainous roads, variables associated with infrastructure and vehicle properties have a larger influence than driver-influenced variables do. However, we found that even under these challenging infrastructure conditions, driving behavior matters. Our findings and analysis could help transport companies decide how to use fleet management data to reduce fuel consumption by choosing the right vehicle for each transportation task and identifying environmentally and economically benign ways of driving. 相似文献
18.
Speed variations are considered as an alternative for reducing fuel consumption during the use phase of passenger cars. It explores vehicle engine operating zones with lower fuel consumption, thus making possible a reduction in fuel consumption when compared to constant speed operation. In this paper, we present an evaluation of two conditions of speed variations: 50–70 km/h and 90–110 km/h using numerical simulations and controlled tests. The controlled tests performed on a test track by a professional pilot show that a reduction in fuel consumption is achievable with a conventional gasoline passenger car, with no adaptations for realizing speed variations. Numerical simulations based on a backward quasi-static powertrain model are used to evaluate the potential of speed variations for reducing fuel consumption in other speed variation conditions. When deceleration is performed with gear in neutral position, simulations show that speed variations are always correlated to a lower fuel consumption. This was suspected through previous numerical tests or evaluation on test bench but not in controlled tests conditions. 相似文献
19.
Transportation sector accounts for a large proportion of global greenhouse gas and toxic pollutant emissions. Even though alternative fuel vehicles such as all-electric vehicles will be the best solution in the future, mitigating emissions by existing gasoline vehicles is an alternative countermeasure in the near term. The aim of this study is to predict the vehicle CO2 emission per kilometer and determine an eco-friendly path that results in minimum CO2 emissions while satisfying travel time budget. The vehicle CO2 emission model is derived based on the theory of vehicle dynamics. Particularly, the difficult-to-measure variables are substituted by parameters to be estimated. The model parameters can be estimated by using the current probe vehicle systems. An eco-routing approach combining the weighting method and k-shortest path algorithm is developed to find the optimal path along the Pareto frontier. The vehicle CO2 emission model and eco-routing approach are validated in a large-scale transportation network in Toyota city, Japan. The relative importance analysis indicates that the average speed has the largest impact on vehicle CO2 emission. Specifically, the benefit trade-off between CO2 emission reduction and the travel time buffer is discussed by carrying out sensitivity analysis in a network-wide scale. It is found that the average reduction in CO2 emissions achieved by the eco-friendly path reaches a maximum of around 11% when the travel time buffer is set to around 10%. 相似文献
20.
Environmental considerations, concerning the negative impacts of ship exhaust gases and particles on ambient air quality, are behind the requirements of cleaner marine fuels currently applied in designated emission control areas (ECAs). We investigated the impact of a ship operating on two types of fuel on the indoor air quality onboard. Gaseous and particulate air pollutants were measured in the engine room and the accommodation sections on-board an icebreaker operating first on Heavy Fuel Oil (HFO, 1%-S), and later Marine Diesel Oil (MDO, 0.1%-S). Statistically significant decrease of SO2, NOx, PM2.5 and particle number concentration were observed when the ship was operating on MDO. Due to the higher content of alkylated PAHs in MDO compared to HFO, the concentration of PAHs increased during operation on MDO. The particulate PAHs classified as carcinogens, were similar to or lower in the MDO campaign. Chemical analysis of PM2.5 revealed that the particles consisted mainly of organic carbon and sulfate, although the fraction of metals was quite large in particles from the engine room. Principal Component Analysis of all measured parameters showed a clear difference between HFO and MDO fuel on the indoor environmental quality on-board the ship. This empirical study poses a first example on how environmental policy-making impacts not only the primary target at a global level, but also brings unexpected localized benefits at workplace level. The study emphasizes the need of further investigations on the impact of new marine fuels and technologies on the indoor air environments on board. 相似文献