共查询到20条相似文献,搜索用时 15 毫秒
1.
Emissions from aviation will continue to increase in the future, in contradiction of global climate policy objectives. Yet, airlines and airline organisations suggest that aviation will become climatically sustainable. This paper investigates this paradox by reviewing fuel-efficiency gains since the 1960s in comparison to aviation growth, and by linking these results to technology discourses, based on a two-tiered approach tracing technology-focused discourses over 20 years (1994–2013). Findings indicate that a wide range of solutions to growing emissions from aviation have been presented by industry, hyped in global media, and subsequently vanished to be replaced by new technology discourses. Redundant discourses often linger in the public domain, where they continue to be associated with industry aspirations of ‘sustainable aviation’ and ‘zero-emission flight’. The paper highlights and discusses a number of technology discourses that constitute ‘technology myths’, and the role these ‘myths’ may be playing in the enduring but flawed promise of sustainable aviation. We conclude that technology myths require policy-makers to interpret and take into account technical uncertainty, which may result in inaction that continues to delay much needed progress in climate policy for aviation. 相似文献
2.
The US Federal Aviation Administration (FAA) has a goal that one billion gallons of renewable jet fuel is consumed by the US aviation industry each year from 2018. We examine the economic and emissions impacts of this goal using renewable fuel produced from a Hydroprocessed Esters and Fatty Acids (HEFA) process from renewable oils. Our approach employs an economy-wide model of economic activity and energy systems and a detailed partial equilibrium model of the aviation industry. If soybean oil is used as a feedstock, we find that meeting the aviation biofuel goal in 2020 will require an implicit subsidy from airlines to biofuel producers of $2.69 per gallon of renewable jet fuel. If the aviation goal can be met by fuel from oilseed rotation crops grown on otherwise fallow land, the implicit subsidy is $0.35 per gallon of renewable jet fuel. As commercial aviation biofuel consumption represents less than 2% of total fuel used by this industry, the goal has a small impact on the average price of jet fuel and carbon dioxide emissions. We also find that, under the pathways we examine, the cost per tonne of CO2 abated due to aviation biofuels is between $50 and $400. 相似文献
3.
The effect of wind changes on aircraft routing has been identified as a potential impact of climate change on aviation. This is of particular interest for trans-Atlantic flights, where the pattern of upper-level winds over the north Atlantic, in particular the location and strength of the jet stream, strongly influences both the optimal flight route and the resulting flight time. Eastbound trans-Atlantic flights can often be routed to take advantage of the strong tailwinds in the jet stream, shortening the flight time and reducing fuel consumption. Here we investigate the impact of climate change on upper-level winds over the north Atlantic, using five climate model simulations from the Fifth Coupled Model Intercomparison Project, considering a high greenhouse-gas emissions scenario. The impact on aircraft routing and flight time are quantified using flight routing software. The climate models agree that the jet stream will be on average located 1° further north, with a small increase in mean strength, by 2100. However daily variations in both its location and speed are significantly larger than the magnitude of any changes due to climate change. The net effect of climate change on trans-Atlantic aircraft routes is small; in the annual-mean eastbound routes are 1 min shorter and located further north and westbound routes are 1 min longer and more spread out around the great circle. There are, however, seasonal variations; route time changes are larger in winter, while in summer both eastbound and westbound route times increase. 相似文献
4.
The comprehensiveness of environmental assessments of future long-distance travel that include high-speed rail (HSR) are constrained by several methodological, institutional, and knowledge gaps that must and can be addressed. These gaps preclude a robust understanding of the changes in environmental, human health, resource, and climate change impacts that result from the implementation of HSR in the United States. The gaps are also inimical to an understanding of how HSR can be positioned for 21st century sustainability goals. Through a synthesis of environmental studies, the gaps are grouped into five overarching grand challenges. They include a spatial incompatibility between HSR and other long-distance modes that is often ignored, an environmental review process that obviates modal alternatives, siloed interest in particular environmental impacts, a dearth of data on future vehicle and energy sources, and a poor understanding of secondary impacts, particularly in land use. Recommendations are developed for institutional investment in multimodal research, knowledge and method building around several topics. Ultimately, the environmental assessment of HSR should be integrated in assessments that seek to understand the complementary and competitive configurations of transportation services, as well as future accessibility. 相似文献
5.
In October 2013, the International Civil Aviation Organization (ICAO) announced that it would put in place a market-based mechanism to cap net greenhouse gas emissions from international civil aviation at 2020 levels. This paper analyses the obligations that would be placed on real airlines under an initial draft “Strawman” proposal that was originally formulated as a starting point for discussions within ICAO, and the extent to which such a proposal would succeed in keeping emissions at or below the desired level. The provisions of the ICAO proposal were then applied to more than 100 existing airlines. In order to protect commercial sensitivities, we used hierarchical cluster analysis to identify groups of different types of airlines. We report the results for these groups rather than for individual airlines. While ambiguities in the Strawman proposal complicated the analysis, we found that, depending on their size and rate of growth, airlines will be required to offset very different proportions of their emissions from international flights. A system of de minimis exemptions, as currently proposed, would benefit some rich countries as well as poor ones. Targeting such exemptions more narrowly would raise practical difficulties, which we describe. We conclude by recommending that ICAO design and implement a much simpler system; and propose one alternative. 相似文献
6.
Victoria Williams Robert B. Noland Ralf Toumi 《Transportation Research Part D: Transport and Environment》2002,7(6):451-464
Two of the ways in which air travel affects climate are the emission of carbon dioxide and the creation of high-altitude contrails. One possible impact reduction strategy is to significantly reduce the formation of contrails. This could be achieved by limiting the cruise altitude of aircraft. If implemented, this could severely constrain air space capacity, especially in parts of Europe. In addition, carbon emissions would likely be higher due to less efficient aircraft operation at lower cruise altitudes. This paper describes an analysis of these trade-offs using an air space simulation model as applied to European airspace. The model simulates the flight paths and altitudes of each aircraft and is here used to calculate emissions of carbon dioxide and changes in the journey time. For a one-day Western European traffic sample, calculations suggest annual mean CO2 emissions would increase by only 4% if cruise altitudes were restricted to prevent contrail formation. The change in journey time depended on aircraft type and route, but average changes were less than 1 min. Our analysis demonstrates that altitude restrictions on commercial aircraft could be an effective means of reducing climate change impacts, though it will be necessary to mitigate the increased controller workload conflicts that this will generate. 相似文献
7.
In this paper we describe the methods used to develop the open source Aviation Emissions Inventory Code and produce a global emissions inventory for scheduled civil aviation, with quantified uncertainty. We estimate that in 2005, scheduled civil aviation was responsible for 180.6 Tg of fuel burn, which agrees to within 4% of other published emissions inventories for 2004 and 2006. By comparing the Aviation Emissions Inventory Code with flight data records, we show that the mean bias in predicted fuel burn at the airport-pair level is +1% for an ensemble of 132 flights, and less than 10% for 5 of the 6 aircraft types used in the validation. 相似文献
8.
Passenger demand for air transportation is expected to continue growing into the future. The increase in operations will undoubtedly lead to an escalation in harmful carbon dioxide emissions, an adverse effect that governing bodies have been striving to mitigate. The International Air Transport Association has set aggressive environmental targets for the global aviation industry. This paper investigates the achievability of those targets in the US using a top-down partial equilibrium model of the aviation system complemented with a previously developed fleet turnover procedure. Three ‘enablers’ are considered: aircraft technologies, operational improvements and sustainable biofuels. To account for sources of uncertainty, Monte Carlo simulations are conducted to run a multitude of scenarios. It was found that the likelihood of meeting all targets is extremely low (0.3%) for the expected demand growth rates in the US. Results show that biofuels have the most impact on system CO2 emissions, responsible for an average 64% of the total savings by 2050 (with aircraft technologies and operational improvements responsible for 31% and 5%, respectively). However, this impact is associated with high uncertainty and very dependent on both biofuel type and availability. 相似文献
9.
Milan Janic 《运输规划与技术》2013,36(5):501-520
Abstract This paper develops a heuristic algorithm for the allocation of airport runway capacity to minimise the cost of arrival and departure aircraft/flight delays. The algorithm is developed as a potential alternative to optimisation models based on linear and integer programming. The algorithm is based on heuristic (‘greedy’) criteria that closely reflect the ‘rules of thumb’ used by air traffic controllers. Using inputs such as arrival and departure demand, airport runway system capacity envelopes and cost of aircraft/flight delays, the main output minimises the cost of arrival and departure delays as well as the corresponding interdependent airport runway system arrival and departure capacity allocation. The algorithm is applied to traffic scenarios at three busy US airports. The results are used to validate the performance of the proposed heuristic algorithm against results from selected benchmarking optimisation models. 相似文献
10.
Improved Air Traffic Management (ATM) leading to reduced en route and gate delay, greater predictability in flight planning, and reduced terminal inefficiencies has a role to play in reducing aviation fuel consumption. Air navigation service providers are working to quantify this role to help prioritize and justify ATM modernization efforts. In the following study we analyze actual flight-level fuel consumption data reported by a major U.S. based airline to study the possible fuel savings from ATM improvements that allow flights to better adhere to their planned trajectories both en route and in the terminal area. To do so we isolate the contribution of airborne delay, departure delay, excess planned flight time, and terminal area inefficiencies on fuel consumption using econometric techniques. The model results indicate that, for two commonly operated aircraft types, the system-wide averages of flight fuel consumption attributed to ATM delay and terminal inefficiencies are 1.0–1.5% and 1.5–4.5%, respectively. We quantify the fuel impact of predicted delay to be 10–20% that of unanticipated delay, reinforcing the role of flight plan predictability in reducing fuel consumption. We rank terminal areas by quantifying a Terminal Inefficiency metric based on the variation in terminal area fuel consumed across flights. Our results help prioritize ATM modernization investments by quantifying the trade-offs in planned and unplanned delays and identifying terminal areas with high potential for improvement. 相似文献
11.
Global carbon dioxide emissions scenarios for aviation derived from IPCC storylines: A meta-analysis
Sveinn Vidar Gudmundsson Annela Anger 《Transportation Research Part D: Transport and Environment》2012,17(1):61-65
This research summarises the aviation CO2 emissions studies that use the Intergovernmental Panel on Climate Change IS92 and Special Report on Emissions Scenarios storylines as GDP growth assumptions to estimate future global carbon dioxide emissions from the aviation sector. The inter-quartile mean and the first and third quartiles are calculated to enable researches studying climate change policies for aviation to use an average global baseline scenario with lower and upper boundaries. We also perform a simple meta-analysis to analyse the assumptions used to derive the baseline scenario and conclude, as expected, that change in revenue-tonne-kilometres and fuel-efficiency are the main drivers behind the baseline scenarios. 相似文献
12.
Tim Schwanen David BanisterJillian Anable 《Transportation Research Part A: Policy and Practice》2011,45(10):993-1006
This paper seeks to develop a deeper understanding of the research on climate change mitigation in transport. We suggest that work to date has focused on the effects of improvements in transport technologies, changes in the price of transport, physical infrastructure provision, behavioural change and alternative institutional arrangements for governing transport systems. In terms of research methodologies, positivist and quantitative analysis prevails, although there are signs of experimentation with non-positivist epistemologies and participatory methods. These particular engagements with climate change mitigation reflect mutually reinforcing tendencies within and beyond the academic transport community. We first draw on a revised version of Thomas Kuhn’s philosophy of science to explore the path dependencies within transport studies, which are at least partly responsible for the predisposition towards quantitative modelling and technology, pricing and infrastructure oriented interventions in transport systems. We then employ the governmentality perspective to examine how transport academics’ engagements with climate change mitigation depend on and align with more general understandings of climate change in UK society and beyond. The analysis makes clear that ecological modernisation and neo-liberal governmentality more generally provide the context for the current focus on and belief in technological, behaviour change, and especially market-based mitigation strategies. While current research trajectories are important and insightful, we believe that a deeper engagement with theoretical insights from the social sciences will produce richer understandings of transport mitigation in transport and briefly outline some of the contributions thinking on socio-technical transitions and practice theories can make. 相似文献
13.
Air traffic has an increasing influence on climate; therefore identifying mitigation options to reduce the climate impact of aviation becomes more and more important. Aviation influences climate through several climate agents, which show different dependencies on the magnitude and location of emission and the spatial and temporal impacts. Even counteracting effects can occur. Therefore, it is important to analyse all effects with high accuracy to identify mitigation potentials. However, the uncertainties in calculating the climate impact of aviation are partly large (up to a factor of about 2). In this study, we present a methodology, based on a Monte Carlo simulation of an updated non-linear climate-chemistry response model AirClim, to integrate above mentioned uncertainties in the climate assessment of mitigation options. Since mitigation options often represent small changes in emissions, we concentrate on a more generalised approach and use exemplarily different normalised global air traffic inventories to test the methodology. These inventories are identical in total emissions but differ in the spatial emission distribution. We show that using the Monte Carlo simulation and analysing relative differences between scenarios lead to a reliable assessment of mitigation potentials. In a use case we show that the presented methodology can be used to analyse even small differences between scenarios with mean flight altitude variations. 相似文献
14.
Sgouris Sgouridis 《Transportation Research Part A: Policy and Practice》2011,45(10):1077-1091
With increasing demand for air transportation worldwide and decreasing marginal fuel efficiency improvements, the contribution of aviation to climate change relative to other sectors is projected to increase in the future. As a result, growing public and political pressures are likely to further target air transportation to reduce its greenhouse gas emissions. The key challenges faced by policy makers and air transportation industry stakeholders is to reduce aviation greenhouse gas emissions while sustaining mobility for passengers and time-sensitive cargo as well as meeting future demand for air transportation in developing and emerging countries. This paper examines five generic policies for reducing the emissions of commercial aviation; (1) technological efficiency improvements, (2) operational efficiency improvements, (3) use of alternative fuels, (4) demand shift and (5) carbon pricing (i.e. market-based incentives). In order to evaluate the impacts of these policies on total emissions, air transport mobility, airfares and airline profitability, a system dynamics modeling approach was used. The Global Aviation Industry Dynamics (GAID) model captures the systemic interactions and the delayed feedbacks in the air transportation system and allows scenarios testing through simulations. For this analysis, a set of 34 scenarios with various levels of aggressiveness along the five generic policies were simulated and tested. It was found that no single policy can maintain emissions levels steady while increasing projected demand for air transportation. Simulation results suggest that a combination of the proposed policies does produce results that are close to a “weak” sustainability definition of increasing supply to meet new demand needs while maintaining constant or increasing slightly emissions levels. A combination of policies that includes aggressive levels of technological and operations efficiency improvements, use of biofuels along with moderate levels of carbon pricing and short-haul demand shifts efforts achieves a 140% increase in capacity in 2024 over 2004 while only increasing emissions by 20% over 2004. In addition, airline profitability is moderately impacted (10% reduction) compared to other scenarios where profitability is reduced by over 50% which pose a threat to necessary investments and the implementation of mitigating measures to reduce CO2 emissions. This study has shown that an approach based on a portfolio of mitigating measures and policies spanning across technology and operational improvements, use of biofuels, demand shift and carbon pricing is required to transition the air transportation industry close to an operating point of environmental and mobility sustainability. 相似文献
15.
The emergence of electric unmanned aerial vehicle (E-UAV) technologies, albeit somewhat futuristic, is anticipated to pose similar challenges to the system operation as those of electric vehicles (EVs). Notably, the charging of EVs en-route at charging stations has been recognized as a significant type of flexible load for power systems, which often imposes non-negligible impacts on the power system operator’s decisions on electricity prices. Meanwhile, the charging cost based on charging time and price is part of the trip cost for the users, which can affect the spatio-temporal assignment of E-UAV traffic to charging stations. This paper aims at investigating joint operations of coupled power and electric aviation transportation systems that are associated with en-route charging of E-UAVs in a centrally controlled and yet dynamic setting, i.e., with time-varying travel demand and power system base load. Dynamic E-UAV charging assignment is used as a tool to smooth the power system load. A joint pricing scheme is proposed and a cost minimization problem is formulated to achieve system optimality for such coupled systems. Numerical experiments are performed to test the proposed pricing scheme and demonstrate the benefits of the framework for joint operations. 相似文献
16.
This study explores how to facilitate the electric vehicle (EV) diffusion from a two-sided market platform competition. We develop a stylized model depicting the platform competition between electric and gasoline vehicles by combining indirect network effects of consumer and energy supplier sides as well as vehicle manufacturers’ profits. The findings of this study provide several meaningful strategic and policy implications for EV manufacturers and policymakers who wish to enhance EV diffusion. First, EV sales are significantly influenced by indirect network effects from the energy supplier side to the consumer side, and vice versa. This implies that EV manufacturers who wish to boost EV diffusion should implement a strategy providing energy suppliers with incentives to willingly join the EV platform. Second, the dynamic nature of the effects of energy costs on platform competition might render counter-intuitive evidence that the drop in oil prices does not always negatively influence EV sales. This requires EV manufacturers to prepare a contingent strategy adjusting to such unexpected conditions. Third, governments should consider the energy supplier side as well as the consumer side in designing EV diffusion policies. When governments have a very challenging EV diffusion target, a balanced policy, which treats both gasoline and electric vehicle technologies fairly, may be more effective than a consumer subsidy policy. 相似文献
17.
With global environmental change and the rise of global megacities, environmental and social externalities of urban systems, and especially of urban form, become increasingly prevalent. The question of optimal urban form has been debated and investigated by different disciplines in numerous contexts, including those of transport costs, land consumption and congestion. Here we elucidate theoretically how urban form and the urban transport system systematically modifies sustainability concerns, such as greenhouse gas emissions, local air pollution and congestion. We illustrate our analytical considerations with empirical analysis. Denser urban form would almost unambiguously mitigate climate change, but it would also lead to undesired effects, such as a higher proportion of urban dwellers affected by air pollution. Our study presents a ‘sustainability window’ by highlighting trade-offs between these sustainability concerns as a function of urban form. Only a combination of transportation policies, infrastructure investments and progressive public finance enables the development of cities that perform well in several sustainability dimensions. We estimate that a residential population density between 50 and 150 persons/ha and a modal share of environmental modes above at least 50% corresponds to the sustainability window of urban form. The parameters of the sustainability window of urban form is subject to policy changes and technological progress. 相似文献
18.
Pierre Merlin 《运输规划与技术》2013,36(1):39-52
A decade of increasing Federal attention to urban transportation needs has culminated in the 1970 Urban Mass Transportation Assistance Act. This Act is intended to provide 10 thousand million dollars over the next 12 years in Federal assistance money to urban public transportation systems. This paper examines the needs of selected U.S. cities as a basis for (1) understanding the vast, various and complex transportation needs of urban areas throughout the country, and (2) assessing the sufficiency of these funds. The sample cities have been placed into three broad categories based on the state of development of their transportation systems. In Category I cities, the essential need is to ensure the survival of bus systems for the use of non‐drivers, or to provide some other viable alternative to the automobile; in Category II cities, the primary needs are to relieve auto congestion and to improve public transportation components, while in Category III cities, the primary need is massive investment to improve and to extend public transportation facilities. It is concluded that the presently intended Federal funding level for transportation will not meet the financial requirements of the Category III cities. 相似文献
19.
全国交通运输科技大会全面回顾总结了"十一五"交通运输科技工作,研究分析交通运输科技发展面临的新形势、新要求,部署"十二五"科技工作。文章基于交通运输科技大会的部署与要求,介绍了"十一五"交通运输科技工作取得的成绩与经验,分析了"十二五"交通运输科技发展的总体思路和重点任务,提出了做好"十二五"交通运输科技工作的具体要求。 相似文献
20.
Airport surface congestion results in significant increases in taxi times, fuel burn and emissions at major airports. This paper describes the field tests of a congestion control strategy at Boston Logan International Airport. The approach determines a suggested rate to meter pushbacks from the gate, in order to prevent the airport surface from entering congested states and to reduce the time that flights spend with engines on while taxiing to the runway. The field trials demonstrated that significant benefits were achievable through such a strategy: during eight four-hour tests conducted during August and September 2010, fuel use was reduced by an estimated 12,250–14,500 kg (4000–4700 US gallons), while aircraft gate pushback times were increased by an average of only 4.4 min for the 247 flights that were held at the gate. 相似文献