首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 280 毫秒
1.
The critical component of all emission models is a driving cycle representing the traffic behaviour. Although Indian driving cycles were developed to test the compliance of Indian vehicles to the relevant emission standards, they neglects higher speed and acceleration and assume all vehicle activities to be similar irrespective of heterogeneity in the traffic mix. Therefore, this study is an attempt to develop an urban driving cycle for estimating vehicular emissions and fuel consumption. The proposed methodology develops the driving cycle using micro-trips extracted from real-world data. The uniqueness of this methodology is that the driving cycle is constructed considering five important parameters of the time–space profile namely, the percentage acceleration, deceleration, idle, cruise, and the average speed. Therefore, this approach is expected to be a better representation of heterogeneous traffic behaviour. The driving cycle for the city of Pune in India is constructed using the proposed methodology and is compared with existing driving cycles.  相似文献   

2.
This study investigates the effect of traffic volume and speed data on the simulation of vehicle emissions and hotspot analysis. Data from a microwave radar and video cameras were first used directly for emission modelling. They were then used as input to a traffic simulation model whereby vehicle drive cycles were extracted to estimate emissions. To reach this objective, hourly traffic data were collected from three periods including morning peak (6–9 am), midday (11–2 pm), and afternoon peak (3–6 pm) on a weekday (June 23, 2016) along a high-volume corridor in Toronto, Canada. Traffic volumes were detected by a single radar and two video cameras operated by the Southern Ontario Centre for Atmospheric Aerosol Research. Traffic volume and composition derived from the radar had lower accuracy than the video camera data and the radar performance varied by lane exhibiting poorer performance in the remote lanes. Radar speeds collected at a single point on the corridor had higher variability than simulated traffic speeds, and average speeds were closer after model calibration. Traffic emissions of nitrogen oxides (NOx) and particulate matter (PM10 and PM2.5) were estimated using radar data as well as using simulated traffic based on various speed aggregation methods. Our results illustrate the range of emission estimates (NOx: 4.0–27.0 g; PM10: 0.3–4.8 g; PM2.5: 0.2–1.3 g) for the corridor. The estimates based on radar speeds were at least three times lower than emissions derived from simulated vehicle trajectories. Finally, the PM10 and PM2.5 near-road concentrations derived from emissions based on simulated speeds were two or three times higher than concentrations based on emissions derived using radar data. Our findings are relevant for project-level emission inventories and PM hot-spot analysis; caution must be exercised when using raw radar data for emission modeling purposes.  相似文献   

3.
A practical methodology for constructing a representative driving cycle reflecting the real-world driving conditions is developed for vehicle emissions testing and estimation. The methodology tackles three major tasks, i.e., data collection, route selection and cycle construction. Both car chasing and on-board measurement techniques were employed to collect vehicle speed data. Route selection was based on the records of average annual daily traffic of the road network between major residential areas and commercial/industrial areas. A variety of parameters were employed as the target statistics characterising the driving pattern in the construction of driving cycles. The performance value and speed-acceleration probability distribution were utilised to determine the best synthesised driving cycle. The method is easy to follow and the driving cycles are comparative to other renounced cycles.  相似文献   

4.
Although car-following behavior is the core component of microscopic traffic simulation, intelligent transportation systems, and advanced driver assistance systems, the adequacy of the existing car-following models for Chinese drivers has not been investigated with real-world data yet. To address this gap, five representative car-following models were calibrated and evaluated for Shanghai drivers, using 2100 urban-expressway car-following periods extracted from the 161,055 km of driving data collected in the Shanghai Naturalistic Driving Study (SH-NDS). The models were calibrated for each of the 42 subject drivers, and their capabilities of predicting the drivers’ car-following behavior were evaluated.The results show that the intelligent driver model (IDM) has good transferability to model traffic situations not presented in calibration, and it performs best among the evaluated models. Compared to the Wiedemann 99 model used by VISSIM®, the IDM is easier to calibrate and demonstrates a better and more stable performance. These advantages justify its suitability for microscopic traffic simulation tools in Shanghai and likely in other regions of China. Additionally, considerable behavioral differences among different drivers were found, which demonstrates a need for archetypes of a variety of drivers to build a traffic mix in simulation. By comparing calibrated and observed values of the IDM parameters, this study found that (1) interpretable calibrated model parameters are linked with corresponding observable parameters in real world, but they are not necessarily numerically equivalent; and (2) parameters that can be measured in reality also need to be calibrated if better trajectory reproducing capability are to be achieved.  相似文献   

5.
ABSTRACT

Connected and autonomous vehicle (CAV) technologies are expected to change driving/vehicle behavior on freeways. This study investigates the impact of CAVs on freeway capacity using a microsimulation tool. A four-lane basic freeway segment is selected as the case study through the Caltrans Performance Measurement System (PeMS). To obtain valid results, various driving behavior parameters are calibrated to the real traffic conditions for human-driven vehicles. In particular, the calibration is conducted using genetic algorithm. A revised Intelligent Driver Model (IDM) is developed and used as the car-following model for CAVs. The simulation is conducted on the basic freeway segment under different penetration rates of CAVs and different freeway speed limits. The results show that with an increase in the market penetration rate, freeway capacity increases, and will increase significantly as the speed limit increases.  相似文献   

6.
Several studies have shown that the type-approval data is not representative for real-world usage. Consequently, the emissions and fuel consumption of the vehicles are underestimated. Aiming at a more dynamic and worldwide harmonised test cycle, the new Worldwide Light-duty Test Cycle is being developed. To analyse the new cycle, we have studied emission results of a test programme of six vehicles on the test cycles WLTC (Worldwide Light-duty Test Cycle), NEDC (New European Driving Cycle) and CADC (Common Artemis Driving Cycle). This paper presents the results of that analysis using two different approaches. The analysis shows that the new driving cycle needs to exhibit realistic warm-up procedures to demonstrate that aftertreatment systems will operate effectively in real service; the first trip of the test cycle could have an important contribution to the total emissions depending on the length of the trip; and that there are some areas in the acceleration vs. vehicle speed map of the new WLTC that are not completely filled, especially between 70 and 110 km/h. For certain vehicles, this has a significant effect on total emissions when comparing this to the CADC.  相似文献   

7.
Recent studies have provided that the vehicle trajectories generated by car-following models may not represent the real driving characteristics, thus leading to significant emission estimation errors. In this paper, two of the most widely used car-following models, Wiedemann and Fritzsche models, were selected and analyzed based on the massive field car-following trajectories in Beijing. A numerical simulation method was designed to generate the following car’s trajectories by using the field trajectories as the input. By comparing the simulated and the filed data, the representativeness of the simulated regime fractions and VSP distributions were evaluated. Then, the mechanism of car-following models was investigated from the aspects of regime determination and the acceleration rule in each regime. Further, the regime threshold parameters and acceleration model were optimized for emission estimations. This study found that the “Following” regime threshold of SDX and the maximum acceleration in “Free Driving” regime are critical parameters for Wiedemann model. The differences between the Wiedemann simulated VSP distribution and the field one can be reduced separately by applying the optimized SDX and maximum acceleration model individually. However, a much sharper reduction was observed by optimizing both parameters simultaneously, and the emission estimation errors were further reduced, which were less than 4% in the case studies. Fritzsche model generated more realistic VSP distributions and emissions, while the maximum accelerations could be further optimized for high speed conditions.  相似文献   

8.
Driving cycles are used to assess vehicle fuel consumption and pollutant emissions. The premise in this article is that suburban road-work vehicles and airport vehicles operate under particular conditions that are not taken into account by conventional driving cycles. Thus, experimental data were acquired from two pickup trucks representing both vehicle fleets that were equipped with a data logger. Based on experimental data, the suburban road-work vehicle showed a mixed driving behavior of high and low speed with occasional long periods of idling. In the airport environment, however, the driving conditions were restricted to airport grounds but were characterized by many accelerations and few high speeds. Based on these measurements, microtrips were defined and two driving cycles proposed. Fuel consumption and pollutant emissions were then measured for both cycles and compared to the FTP-75 and HWFCT cycles, which revealed a major difference: at least a 31% increase in fuel consumption over FTP-75. This increased fuel consumption translates into higher pollutant emissions. When CO2 equivalent emissions are taken into account, the proposed cycles show an increase of at least 31% over FTP-75 and illustrate the importance of quantifying fleet speed patterns to assess CO2 equivalent emissions so that the fleet manager can determine potential gains in energy or increased pollutant emissions.  相似文献   

9.
Simulating driving behavior in high accuracy allows short-term prediction of traffic parameters, such as speeds and travel times, which are basic components of Advanced Traveler Information Systems (ATIS). Models with static parameters are often unable to respond to varying traffic conditions and simulate effectively the corresponding driving behavior. It has therefore been widely accepted that the model parameters vary in multiple dimensions, including across individual drivers, but also spatially across the network and temporally. While typically on-line, predictive models are macroscopic or mesoscopic, due to computational and data considerations, nowadays microscopic models are becoming increasingly practical for dynamic applications. In this research, we develop a methodology for online calibration of microscopic traffic simulation models for dynamic multi-step prediction of traffic measures, and apply it to car-following models, one of the key models in microscopic traffic simulation models. The methodology is illustrated using real trajectory data available from an experiment conducted in Naples, using a well-established car-following model. The performance of the application with the dynamic model parameters consistently outperforms the corresponding static calibrated model in all cases, and leads to less than 10% error in speed prediction even for ten steps into the future, in all considered data-sets.  相似文献   

10.
Motor vehicle emission factors are generally derived from driving tests mimicking steady state conditions or transient drive cycles. Neither of these test conditions, however, completely represents real world driving conditions. In particular, they fail to determine emissions generated during the accelerating phase – a condition in which urban buses spend much of their time. We analyse and compare the results of time-dependant emission measurements conducted on diesel and compressed natural gas buses during an urban driving cycle on a chassis dynamometer and we derive power-law expressions relating carbon dioxide emission factors to the instantaneous speed while accelerating from rest. Emissions during acceleration are compared with that during steady speed operation.  相似文献   

11.
This paper analyses transport energy consumption of conventional and electric vehicles in mountainous roads. A standard round trip in Andorra has been modelled in order to characterise vehicle dynamics in hilly regions. Two conventional diesel vehicles and their electric-equivalent models have been simulated and their performances have been compared. Six scenarios have been simulated to study the effects of factors such as orography, traffic congestion and driving style. The European fuel consumption and emissions test and Artemis urban driving cycles, representative of European driving cycles, have also been included in the comparative analysis. The results show that road grade has a major impact on fuel economy, although it affects consumption in different levels depending on the technology analysed. Electric vehicles are less affected by this factor as opposed to conventional vehicles, increasing the potential energy savings in a hypothetical electrification of the car fleet. However, electric vehicle range in mountainous terrains is lower compared to that estimated by manufacturers, a fact that could adversely affect a massive adoption of electric cars in the short term.  相似文献   

12.
Traffic operations for new road layouts are often simulated using microscopic traffic simulation packages. These traffic simulation packages usually simulate traffic on freeways by a combination of a car-following model and a lane change model. The car-following models have gained attention of researchers and are well calibrated versus data. The proposed lane change models are often representations of assumed reasonable behavior, not necessarily corresponding to reality. The current simulation packages apply solely one specific type of model for car-following or lane changing for all vehicles during the simulation. This paper investigates the decision process of lane changing maneuvers for a variety of drivers based on a two-stage test-drive. Participants are asked to take a drive on a freeway in the Netherlands in a camera-equipped vehicle. Afterwards, the drivers are asked to comment on their choices related to lane and speed choice, while watching the video. This paper reveals that different drivers have completely different strategies to choose lanes, and the choices to change lane are related to their speed choice. Four distinct strategies are empirically found. These strategies differ not only in parameter values, as is currently being modeled in most simulation packages, but also in their reasoning. Most remarkably, all drivers perceive their strategy as an obvious behavior and expect all other drivers to drive in a similar way. In addition to the interviews of the participants in the test-drive, 11 people who did not take part in the experiment were interviewed and questioned on lane change decisions. Moreover, the findings of this study have been presented to various groups of audience with different backgrounds (about 150 people). Their comments and feedback on the derived driving strategies have added some value to this study. The findings in this paper form a starting point for developing a novel lane change model which considers four different driving strategies among the drivers on freeway. This is a significant contribution in the area of driving behavior modeling, since the existing microscopic simulators consider only one type of lane change models for all drivers during the simulation. This could lead to significant changes in the way lane changes on freeways are modeled.  相似文献   

13.
The objective of this paper is to quantify and characterize driver behavior under different roadway geometries and weather conditions. In order to explore how a driver perceives the rapidly changing driving surrounding (i.e. different weather conditions and road geometry configurations) and executes acceleration maneuvers accordingly, this paper extends a Prospect Theory based acceleration modeling framework. A driving simulator is utilized to conduct 76 driving experiments. Foggy weather, icy and wet roadway surfaces, horizontal and vertical curves, and different lane and shoulder widths are simulated while having participants driving behind a yellow cab at speeds/headways of their choice. After studying the driving trends observed in the different driving experiments, the extended Prospect Theory based acceleration model is calibrated using the produced trajectory data. The extended Prospect Theory based model parameters are able to reflect a change in risk-perception and acceleration maneuvering when receiving different parameterized exogenous information. The results indicate that drivers invest more attention and effort to deal with the roadway challenges compared to the effort to deal with the weather conditions. Moreover, the calibrated model is used to simulate a highway segment and observe the produced fundamental diagram. The preliminary results suggest that the model is capable of capturing driver behavior under different roadway and weather conditions leading to changes in capacity and traffic disruptions.  相似文献   

14.
Driving behavior is generally considered to be one of the most important factors in crash occurrence. This paper aims to evaluate the benefits of utilizing context-relevant information in the driving behavior assessment process (i.e. contextual driving behavior assessment approach). We use a Bayesian Network (BN) model that investigates the relationships between GPS driving observations, individual driving behavior, individual driving risks, and individual crash frequency. In contrast to prior studies without context information (i.e. non-contextual approach), the data used in the BN approach is a combination of contextual features in the surrounding environment that may contribute to crash risk, such as road conditions surrounding the vehicle of interest and dynamic traffic flow information, as well as the non-contextual data such as instantaneous driving speed and the acceleration/deceleration of a vehicle. An information-aggregation mechanism is developed to aggregates massive amounts of vehicle GPS data points, kinematic events and context information into drivel-level data. With the proposed model, driving behavior risks for drivers is assessed and the relationship between contextual driving behavior and crash occurrence is established. The analysis results in the case study section show that the contextual model has significantly better performance than the non-contextual model, and that drivers who drive at a speed faster than others or much slower than the speed limit at the ramp, and with more rapid acceleration or deceleration on freeways are more likely to be involved in crash events. In addition, younger drivers, and female drivers with higher VMT are found to have higher crash risk.  相似文献   

15.
Congestion pricing is one of the widely contemplated methods to manage traffic congestion. The purpose of congestion pricing is to manage traffic demand generation and supply allocation by charging fees (i.e., tolling) for the use of certain roads in order to distribute traffic demand more evenly over time and space. This study presents a framework for large-scale variable congestion pricing policy determination and evaluation. The proposed framework integrates departure time choice and route choice models within a regional dynamic traffic assignment (DTA) simulation environment. The framework addresses the impact of tolling on: (1) road traffic congestion (supply side), and (2) travelers’ choice dimensions including departure time and route choices (demand side). The framework is applied to a simulation-based case study of tolling a major freeway in Toronto while capturing the regional effects across the Greater Toronto Area (GTA). The models are developed and calibrated using regional household travel survey data that reflect the heterogeneity of travelers’ attributes. The DTA model is calibrated using actual traffic counts from the Ontario Ministry of Transportation and the City of Toronto. The case study examined two tolling scenarios: flat and variable tolling. The results indicate that: (1) more benefits are attained from variable pricing, that mirrors temporal congestion patterns, due to departure time rescheduling as opposed to predominantly re-routing only in the case of flat tolling, (2) widespread spatial and temporal re-distributions of traffic demand are observed across the regional network in response to tolling a significant, yet relatively short, expressway serving Downtown Toronto, and (3) flat tolling causes major and counterproductive rerouting patterns during peak hours, which was observed to block access to the tolled facility itself.  相似文献   

16.
Acceleration is an important driving manoeuvre that has been modelled for decades as a critical element of the microscopic traffic simulation tools. The state-of-the art acceleration models have however primarily focused on lane based traffic. In lane based traffic, every driver has a single distinct lead vehicle in the front and the acceleration of the driver is typically modelled as a function of the relative speed, position and/or type of the corresponding leader. On the contrary, in a traffic stream with weak lane discipline, the subject driver may have multiple vehicles in the front. The subject driver is therefore subjected to multiple sources of stimulus for acceleration and reacts to the stimulus from the governing leader. However, only the applied accelerations are observed in the trajectory data, and the governing leader is unobserved or latent. The state-of-the-art models therefore cannot be directly applied to traffic streams with weak lane discipline.This prompts the current research where we present a latent leader acceleration model. The model has two components: a random utility based dynamic class membership model (latent leader component) and a class-specific acceleration model (acceleration component). The parameters of the model have been calibrated using detailed trajectory data collected from Dhaka, Bangladesh. Results indicate that the probability of a given front vehicle of being the governing leader can depend on the type of the lead vehicle and the extent of lateral overlap with the subject driver. The estimation results are compared against a simpler acceleration model (where the leader is determined deterministically) and a significant improvement in the goodness-of-fit is observed. The proposed models, when implemented in microscopic traffic simulation tools, are expected to result more realistic representation of traffic streams with weak lane discipline.  相似文献   

17.
Urban air quality is generally poor at traffic intersections due to variations in vehicles’ speeds as they approach and leave. This paper examines the effect of traffic, vehicle and road characteristics on vehicular emissions with a view to understand a link between emissions and the most likely influencing and measurable characteristics. It demonstrates the relationships of traffic, vehicle and intersection characteristics with vehicular exhaust emissions and reviews the traffic flow and emission models. Most studies have found that vehicular exhaust emissions near traffic intersections are largely dependent on fleet speed, deceleration speed, queuing time in idle mode with a red signal time, acceleration speed, queue length, traffic-flow rate and ambient conditions. The vehicular composition also affects emissions. These parameters can be quantified and incorporated into the emission models. There is no validated methodology to quantify some non-measurable parameters such as driving behaviour, pedestrian activity, and road conditions  相似文献   

18.
Although it is known that driving patterns strongly affect the emission of pollutants from vehicles, existing empirical knowledge about driving patterns is limited. The first-step in this project was to find relevant parameters for describing driving patterns. These served as a basis for investigating variations in such patterns. An experimental study was carried out to compare driving patterns between and within different street-types, drivers and traffic conditions. Data were analysed using general factorial analysis of variance. Driving patterns showed very significant differences between street type and driver, and these factors had significant impact on all the parameters employed. The effect of street type was generally higher than the driver effect. Average speed and deceleration levels were lower at peak hours compared to off-peak hours. Men had higher acceleration levels than women generally and specially on one street type. The study showed no major differences in average speed for gender except for one street type where men drove faster than women. The knowledge attained in this study may be a step towards a better knowledge of driving patterns and their variation, and may provide possibilities of changing driving patterns and thus exhaust emissions from vehicles. Knowledge about driving patterns is also an essential part in efforts to improve models to calculate emission from traffic in urban environment.  相似文献   

19.
This paper establishes a link between an activity-based model for the Greater Toronto Area (GTA), dynamic traffic assignment, emission modelling, and air quality simulation. This provides agent-based output that allows vehicle emissions to be tracked back to individuals and households who are producing them. In addition, roadway emissions are dispersed and the resulting ambient air concentrations are linked with individual time-activity patterns in order to assess population exposure to air pollution. This framework is applied to evaluate the effects of a range of policy interventions and 2031 scenarios on the generation of vehicle emissions and greenhouse gases in the GTA. Results show that the predicted increase of approximately 2.6 million people and 1.3 million jobs in the region by 2031 compared to 2001 levels poses a major challenge in achieving meaningful reductions in GHGs and air pollution.  相似文献   

20.
In this study, we develop a Passenger Car Emission Unit (PCEU) framework for estimating traffic emissions. The idea is analogous to the use of Passenger Car Unit (PCU) for modeling the congestion effect of different vehicle types. In this approach, we integrate emission modeling and cost evaluation. Different emissions, typically speed-dependent, are integrated as an overall cost via their corresponding external costs. We then develop a normalization procedure to obtain a general trend that is applicable for all vehicle types, which is used to derive a standard cost curve. Different vehicle types with different emission standards are then mapped to this standard cost curve through their corresponding PCEUs that are to be calibrated. Once the standard cost curve and PCEUs have been calibrated, to estimate the overall cost of emission for a particular vehicle, we only need to multiply the corresponding PCEU of that vehicle type to the standard cost curve. We apply this PCEU approach to Hong Kong and obtain promising results. Compared with the results obtained by the full-blown emission model COPERT, the approach achieves high accuracy but obviates tedious inputs typically required for emission estimation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号