首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The commonly used photochemical air quality model, the Urban Airshed Model (UAM), requires emission estimates with grid-based, hourly resolution. In contrast, travel demand models, used to simulate the travel activity model inputs for the transportation-related emissions estimation, typically only provide traffic volumes for a specific travel period (e.g. the a.m. and p.m. peak periods). A few transportation agencies have developed procedures to allocate period-based travel demand data into hourly emission inventories for regional grid cells. Because there was no theoretical framework for disaggregating period-based volumes to hourly volumes, application of these procedures frequently relied upon a single hypothetical hourly distribution of travel volumes. This study presents a new theoretical modeling framework that integrates traffic count data and travel demand model link volume estimates to derive intra-period hourly volume estimates by trip purpose. We propose a new interpretation of the model coefficients and define hourly allocation factors by trip purpose. These allocation factors can be used to disaggregate the travel demand model ‘period-based’ simulation volumes into hourly resolution, thereby improving grid-based, hourly emission estimates in the UAM.  相似文献   

2.
The ozone weekend effect refers to the counterintuitive observations showing weekend ozone concentrations frequently to be higher than or comparable to those observed on weekdays. Ozone dynamics are closely linked to the timing, magnitude and fleet mix of transportation activities, primary sources of ozone precursor emissions. To examine the effects of traffic activity on the ozone weekend effect, a statistical analysis was conducted of the weekly patterns of time dependent light-duty vehicle and heavy-duty truck volumes observed at 27 weigh-in-motion stations in southern California. The results show statistically significant variations in traffic flows by day of week, by vehicle type, and by location with respect to the Los Angeles metropolitan area. These variations in traffic, when converted to variations in running exhaust emissions, tend to support four of the seven California Air Resources Board’s ozone weekend effect hypotheses.  相似文献   

3.
Highway emissions represent a major source of many pollutants. Use of local data to model these emissions can have a large impact on the magnitude and distribution of emissions predicted and can significantly improve the accuracy of local scale air quality modeling assessments. This paper provides a comparison of top–down and bottom–up approaches for developing emission inventories for modeling in one urban area, Philadelphia, in calendar year 1999. A bottom–up approach relies on combining motor vehicle emission factors and vehicle activity data from a travel demand model estimated at the road link level to generate hourly emissions data. This approach can result in better estimates of levels and spatial distribution of on-road motor vehicle emissions than a top–down approach that relies on more aggregated information and default modeling inputs.  相似文献   

4.
The aim of this research is the implementation of a GPS-based modelling approach for improving the characterization of vehicle speed spatial variation within urban areas, and a comparison of the resulting emissions with a widely used approach to emission inventory compiling. The ultimate goal of this study is to evaluate and understand the importance of activity data for improving the road transport emission inventory in urban areas. For this purpose, three numerical tools, namely, (i) the microsimulation traffic model (VISSIM); (ii) the mesoscopic emissions model (TREM); and (iii) the air quality model (URBAIR), were linked and applied to a medium-sized European city (Aveiro, Portugal). As an alternative, traffic emissions based on a widely used approach are calculated by assuming a vehicle speed value according to driving mode. The detailed GPS-based modelling approach results in lower total road traffic emissions for the urban area (7.9, 5.4, 4.6 and 3.2% of the total PM10, NOx, CO and VOC daily emissions, respectively). Moreover, an important variation of emissions was observed for all pollutants when analysing the magnitude of the 5th and 95th percentile emission values for the entire urban area, ranging from −15 to 49% for CO, −14 to 31% for VOC, −19 to 46% for NOx and −22 to 52% for PM10. The proposed GPS-based approach reveals the benefits of addressing the spatial and temporal variability of the vehicle speed within urban areas in comparison with vehicle speed data aggregated by a driving mode, demonstrating its usefulness in quantifying and reducing the uncertainty of road transport inventories.  相似文献   

5.
Suburban sprawl, population growth, and automobile dependency contribute directly to air pollution problems in US metropolitan areas. As metropolitan regions attempt to mitigate these problems, they are faced with the difficult task of balancing the mobility needs of a growing population and economy, while simultaneously lowering or maintaining levels of ambient pollutants. Although ambient air quality can be directly monitored, predicting the amount and fraction of the mobile source components presents special challenges. A modeling framework that can correlate spatial and temporal emission-specific vehicle activities is required for the complex photochemical models used to predict pollutant concentrations. This paper discusses the GIS-based modeling approach called the Mobile Emission Assessment System for Urban and Regional Evaluation (MEASURE). MEASURE provides researchers and planners with a means of assessing motor vehicle emission reduction strategies. Estimates of spatially resolved fleet composition and activity are combined with activity-specific emission rates to predict engine start and running exhaust emissions. Engine start emissions are estimated using aggregate zonal information. Running exhaust emissions are predicted using road segment specific information and aggregate zonal information. The paper discusses the benefits and challenges related to mobile source emissions modeling in a GIS framework and identifies future GIS mobile emissions modeling research needs.  相似文献   

6.
This study investigates the effect of traffic volume and speed data on the simulation of vehicle emissions and hotspot analysis. Data from a microwave radar and video cameras were first used directly for emission modelling. They were then used as input to a traffic simulation model whereby vehicle drive cycles were extracted to estimate emissions. To reach this objective, hourly traffic data were collected from three periods including morning peak (6–9 am), midday (11–2 pm), and afternoon peak (3–6 pm) on a weekday (June 23, 2016) along a high-volume corridor in Toronto, Canada. Traffic volumes were detected by a single radar and two video cameras operated by the Southern Ontario Centre for Atmospheric Aerosol Research. Traffic volume and composition derived from the radar had lower accuracy than the video camera data and the radar performance varied by lane exhibiting poorer performance in the remote lanes. Radar speeds collected at a single point on the corridor had higher variability than simulated traffic speeds, and average speeds were closer after model calibration. Traffic emissions of nitrogen oxides (NOx) and particulate matter (PM10 and PM2.5) were estimated using radar data as well as using simulated traffic based on various speed aggregation methods. Our results illustrate the range of emission estimates (NOx: 4.0–27.0 g; PM10: 0.3–4.8 g; PM2.5: 0.2–1.3 g) for the corridor. The estimates based on radar speeds were at least three times lower than emissions derived from simulated vehicle trajectories. Finally, the PM10 and PM2.5 near-road concentrations derived from emissions based on simulated speeds were two or three times higher than concentrations based on emissions derived using radar data. Our findings are relevant for project-level emission inventories and PM hot-spot analysis; caution must be exercised when using raw radar data for emission modeling purposes.  相似文献   

7.
Accurate road-traffic emission inventories are of great interest to metropolitan planning agencies especially in the appraisal of regional transport policies. Integrated road transport emission models are an effective means of establishing emission estimates, yet their development requires significant investments in data and resources. It is therefore important to investigate which data inputs are the most critical to inventory accuracy. To address this issue, an integrated transport and emissions model is developed using the Montreal metropolitan region as a case-study. Daily regional hydrocarbon (HC) emissions from private individual travel are estimated, including the excess emissions due to engine starts. The sensitivity of emission estimates is then evaluated by testing various levels of input aggregation common in practice and in previous research. The evaluated inputs include the effect of start emissions, ambient weather conditions, traffic speed, path choice, and vehicle registry information. Inherent randomness within the integrated model through vehicle selection and path allocation is also evaluated. The inclusion of start emissions is observed to have the largest impact on emission inventories, contributing approximately 67 % of total on-road HC emissions. Ambient weather conditions (season) and vehicle registry data (types, model years) are also found to be significant. Model randomness had a minimal effect in comparison with the impact of other variables.  相似文献   

8.
Vehicle border crossings between Mexico and the United States generate significant amounts of air pollution, which can pose health threats to personnel at the ports of entry (POEs) as well as drivers, pedestrians, and local inhabitants. Although these health risks could be substantial, there is little previous work quantifying detailed emission profiles at POEs. Using the Mariposa POE in Nogales, Arizona as a case study, light-duty and heavy-duty vehicle emissions were analyzed with the objective of identifying effective emission reduction strategies such as inspection streamlining, physical infrastructure improvements, and fuel switching. Historical traffic information as well as field data were used to establish a simulation model of vehicle movement in VISSIM. Four simulation scenarios with varied congestion levels were considered to represent real-world seasonal changes in traffic volume. Four additional simulations captured varying levels of expedited processing procedures. The VISSIM output was analyzed using the EPA’s MOVES emission simulation software for conventional air pollutants. For the highest congestion scenario, which includes a 200% increase in vehicle volume, total emissions increase by around 460% for PM2.5 and NOx, and 540% for CO, SO2, GHGs, and NMHC over uncongested conditions for a two-hour period. Expedited processing and queue reduction can reduce emissions in this highest congestion scenario by as much as 16% for PM2.5, 18% for NOx, 20% for NMHC, 7% for SO2 and 15% for GHGs and CO. Other potential mitigation strategies examined include fleet upgrades, fuel switching, and fuel upgrades. Adoption of some or all of these changes would not only reduce emissions at the Mariposa POE, but would have air-quality benefits for nearby populations in both the US and Mexico. Fleet-level changes could have far-reaching improvements in air quality on both sides of the border.  相似文献   

9.
When translating travel demand model output to photochemical model input, period-based network assignment volumes must be converted to gridded-hourly vehicle emissions. A post-processor, such as the California Direct Travel Impact Model (DTIM2), is frequently used to disaggregate the period-based travel demand assignments to the fine grained spatial and temporal resolution required by the photochemical models. A recent theoretical enhancement proposed refining the temporal and spatial resolutions of travel demand model predictions using observed count data. This method provides a technique for disaggregating the period-based travel demand model assignments (e.g., AM peak, PM peak) into the hourly summaries required by most photochemical model (Lin and Niemeier, 1997). In this study we present a methodological framework for applying the new theory and discuss the results of a large-scale application empirical comparison between the standard and proposed methods for estimating regional mobile emissions in Sacramento, California. The standard method produced slightly higher estimates of daily emissions (about 1%) when compared to the emissions estimated using observed count data. However, the two approaches produced hourly emissions estimates that differed by as much as 15% in some hours.  相似文献   

10.
Ambient concentrations of pollutants are correlated with emissions, but the contribution to ambient air quality of on-road mobile sources is not necessarily equal to their contribution to regional emissions. This is true for several reasons such as the distribution of other pollution sources and regional topology, as well as meteorology. In this paper, using a dataset from a travel demand model for the Sacramento metropolitan area for 2005, regional vehicle emissions are disaggregated into hourly, gridded emission inventories, and transportation-related concentrations are estimated using an atmospheric dispersion model. Contributions of on-road motor vehicles to urban air pollution are then identified at a regional scale. The contributions to ambient concentrations are slightly higher than emission fractions that transportation accounts for in the region, reflecting that relative to other major pollution sources, mobile sources tend to have a close proximity to air quality monitors in urban areas. The contribution results indicate that the impact of mobile sources on PM10 is not negligible, and mobile sources have a significant influence on both NOx and VOC pollution that subsequently results in secondary particulate matter and ozone formation.  相似文献   

11.
This paper focuses on the problem of estimating historical traffic volumes between sparsely-located traffic sensors, which transportation agencies need to accurately compute statewide performance measures. To this end, the paper examines applications of vehicle probe data, automatic traffic recorder counts, and neural network models to estimate hourly volumes in the Maryland highway network, and proposes a novel approach that combines neural networks with an existing profiling method. On average, the proposed approach yields 24% more accurate estimates than volume profiles, which are currently used by transportation agencies across the US to compute statewide performance measures. The paper also quantifies the value of using vehicle probe data in estimating hourly traffic volumes, which provides important managerial insights to transportation agencies interested in acquiring this type of data. For example, results show that volumes can be estimated with a mean absolute percent error of about 21% at locations where average number of observed probes is between 30 and 47 vehicles/h, which provides a useful guideline for assessing the value of probe vehicle data from different vendors.  相似文献   

12.
Diurnal cycles of ground-level ozone and its precursor NOx concentrations stem from and reflect complex temporal patterning of many underlying factors, including transportation emissions. Investigating the complexity of diurnal ozone/NOx cycles at a finer temporal resolution allows a better understanding of ozone dynamics and helps in designing ozone control strategies. This study applied functional data analysis techniques to hourly resolved ozone and NOx measurement data from the 1997 Southern California Ozone Study. Functional analysis of variance on diurnal ozone/NOx cycles for urban and rural monitoring sites confirmed, in a new continuous functional form, the ozone weekend effect. Functional data analysis also allows for a direct examination of day-of-week effects on ozone formation/destruction rates. Comparisons of Sunday ozone rates to those on weekdays demonstrate earlier, faster, and longer duration of ozone accumulation on Sunday. The results are further interpreted from the transportation emissions perspective using hourly resolved weigh-in-motion traffic data.  相似文献   

13.
Real-world vehicle operating mode data (2.5 million 1 Hz records), collected by instrumenting the vehicles of 82 volunteer drivers with OBD datalogger and GPS while they drove their routine travel routes, were analyzed to quantify vehicle emissions estimate errors due to road grade and driving style in rural, hilly Vermont. Data were collected in winter and summer for MY 1996 and newer passenger cars and trucks only. EPA MOVES2010b was used to estimate running exhaust emissions associated with measured vehicle activity. Changes in vehicle specific power (VSP) and MOVES operating mode (OpMode) due to proper accounting for real-world road grade indicated emission rate errors between 10% and 48%, depending on pollutant, chiefly because grade-related changes in VSP could shift activity by as many as six OpModes, depending on road type. The correct MOVES OpMode assignment was made only 33–55% of the time when road grade was not included in the VSP calculation. Driving style of individual drivers was difficult to assess due to unknown traffic operations data, but the largest differences between individual drivers were observed on rural restricted roads, where traffic conditions and control have minimal impact. The results suggest the importance of (1) measuring and incorporating real-world road grade in order to correctly assign MOVES emission rates; and (2) developing a driving style typology to account for differences in the MOVES emissions estimates due to driver variability.  相似文献   

14.
This paper describes the development of an integrated approach for assessing ambient air quality and population exposure as a result of road passenger transportation in large urban areas. A microsimulation activity-based travel demand model for the Greater Toronto Area – the Travel Activity Scheduler for Household Agents – is extended with capabilities for modelling and mapping of traffic emissions and atmospheric dispersion. Hourly link-based emissions and zone-based soak emissions were estimated. In addition, hourly roadway emissions were dispersed at a high spatial resolution and the resulting ambient air concentrations were linked with individual time-activity patterns derived from the model to assess person-level daily exposure. The method results in an explicit representation of the temporal and spatial variation in emissions, ambient air quality, and population exposure.  相似文献   

15.
After having implemented numerous regulations, e.g., coercive policies on vehicle use and purchase, it is becoming increasingly difficult to find further potential to control vehicle emissions in Beijing, as the air quality is still poor. This research provides a different approach for policy-makers to reduce vehicle emissions by managing demand. We found that parents ferrying their children to and from school is an important but long-neglected contributor to traffic congestion and vehicle emissions. This phenomenon is very common in China because of the social culture. In this research, parallel tests during both the school season and the non-school season were adopted, and emissions in both seasons were calculated based on travel demand and emission models. The results revealed that emissions factors (in g/km) for criteria pollutants and CO2 increased by over 10% during rush hours during the school season due to traffic condition deterioration compared with non-school season. Daily HC, CO, NOx, PM and CO2 emissions from the passenger car fleet were 8.3%, 7.8%, 6.4%, 6.3% and 6.5% higher compared with those during the non-school season, respectively. These differences are greater than the total vehicular emission reduction by other control measures in 2014 in Beijing. For policy makers, providing safe and efficient ways to ferry children would be a useful and harmonious strategy for future vehicle emission control.  相似文献   

16.
We estimate hourly truck traffic using period-based car volumes that are usually available from travel demand models. Due to the lack of local or regional data, default vehicle-miles traveled mix by vehicle class in mobile emission inventory models is usually used in transportation emissions inventory estimates. Results from such practice, however, are often far from accurate. Heavy-duty trucks generate orders of magnitudes higher emission rates than light duty vehicles. Vehicle classification data collected from weigh-in-motion stations in California are used to examine the performance of various forms of the method across days of week and geographic areas. We find that the models identified provide satisfactory and statistically robust estimates of truck traffic.  相似文献   

17.
A novel methodology that provides more detailed estimates of vehicular polluting emissions is offered, in order to contribute to the improvement and the precision of emission inventories of vehicle sources through the consideration of instantaneous speed changes or acceleration instead of average vehicular speeds. This paper presents the construction and application of an instantaneous emissions model designated hereunder as “Transims’s Snapshots-Based Emissions”, which is set on a Geographic Information System that incorporates instantaneous fuel consumption factors and fuel-based emission factors to attain highest resolution of both, spatial and temporal distribution of vehicular polluting emissions based on traffic simulation through cellular automata with TRANSIMS. This work was applied to the road network of the Mexico City Metropolitan Area as case study. The development of this powerful tool led to obtaining 86,400 maps of the spatial and temporal distribution of vehicular emissions per vehicle circulating on the road network, including the following pollutants: carbon monoxide and carbon dioxide, nitrogen oxides, total hydrocarbons, sulfur oxides, polycyclic aromatic hydrocarbons, black carbon, particles PM10 and PM2.5. The said maps allowed identification with highest level of detail, of the emissions and Hot-spots of fuel consumption. Also, the model permitted to obtain the emissions’ longitudinal profiles of a given vehicle along its route. This study shows that the integration method of the polynomial regression models represents an opportunity for each city to develop more easily and openly its own regional emissions models without requiring deeper programming knowledge.  相似文献   

18.
This paper estimates the traffic volume and travel time effects of the road congestion pricing implemented on the San Francisco-Oakland Bay Bridge. I employ both difference-in-differences and regression discontinuity approaches to analyze previously unexploited data for the two years spanning the price change and obtain causal estimates of the hourly average treatment effects of the policy. I find evidence of peak spreading in traffic volume and decreases in travel time during peak hours. I also find suggestive evidence of substitution to a nearby bridge and decreases in travel time variability. In addition, I calculate own- and cross-price elasticities.  相似文献   

19.
This study examines the impact of weather on pedestrian activity, as well as the temporal trends of pedestrian flows in the city of Montreal, Canada. The direct and lagged effects of weather variables on hourly volumes are determined for the temperate and cold months, as well as for weekdays and weekends. Pedestrian hourly volumes are found to decrease in the winter. In downtown locations, there are three weekday pedestrian hourly peaks; a pattern distinctive from those observed in other surveys. Also, temperature, humidity, wind speed as well as direct and lagged effects of precipitation are the main factors affecting pedestrian activity. In winter, pedestrian flows are more sensitive to wind speeds and precipitation, and also during weekends than weekdays. Built environment plays a role not only in the magnitude but also in the temporal profile of pedestrian sidewalk activity. In comparison to bicycle ridership, pedestrian flows seem to be much less sensitive to weather.  相似文献   

20.
Choices of travel mode and trip chain as well as their interplays have long drawn the interests of researchers. However, few studies have examined the differences in the travel behaviors between holidays and weekdays. This paper compares the choice of travel mode and trip chain between holidays and weekdays tours using travel survey data from Beijing, China. Nested Logit (NL) models with alternative nesting structures are estimated to analyze the decision process of travelers. Results show that there are at least three differences between commuting-based tours on weekdays and non-commuting tours on holidays. First, the decision structures in weekday and holiday tours are opposite. In weekday tours people prefer to decide on trip chain pattern prior to choosing travel mode, whereas in holiday tours travel mode is chosen first. Second, holiday tours show stronger dependency on cars than weekday tours. Third, travelers on holidays are more sensitive to changes in tour time than to the changes in tour cost, while commuters on weekdays are more sensitive to tour cost. Findings are helpful for improving travel activity modeling and designing differential transportation system management strategies for weekdays and holidays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号