首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Continuous descent operations with controlled times of arrival at one or several metering fixes could enable environmentally friendly procedures without compromising terminal airspace capacity. This paper focuses on controlled time of arrival updates once the descent has been already initiated, assessing the feasible time window (and associated fuel consumption) of continuous descent operations requiring neither thrust nor speed-brake usage along the whole descent (i.e. only elevator control is used to achieve different metering times). Based on previous works, an optimal control problem is formulated and numerically solved. The earliest and latest times of arrival at the initial approach fix have been computed for the descent of an Airbus A320 under different scenarios, considering the potential altitudes and distances to go when receiving the controlled time of arrival update. The effects of the aircraft mass, initial speed, longitudinal wind and position of the initial approach fix on the time window have been also investigated. Results show that time windows about three minutes could be achieved for certain conditions, and that there is a trade-off between robustness facing controlled time of arrival updates during the descent and fuel consumption. Interestingly, minimum fuel trajectories almost correspond to those of minimum time.  相似文献   

2.
This paper considers the environmental effects of air traffic management speed constraints during the departure phase of flight. We present a CO2 versus noise trade-off study that compares aircraft departure procedures subject to speed constraints with a free speed scenario. A departure route at Gothenburg Landvetter Airport in Sweden is used as a case study and the analysis is based on airline flight recorded data extracted from the Airbus A321 aircraft. Results suggest that CO2 emissions could be reduced by 180 kg per flight if all departure speed constraints were removed at a cost of increased noise exposure below 70 dB(A).  相似文献   

3.
The aviation community is actively investigating initiatives to reduce aircraft fuel consumption from surface operations, as surface management strategies may face fewer implementation barriers compared with en route strategies. One fuel-saving initiative for the air transportation system is the possibility of holding aircraft at the gate, or the spot, until the point at which they can taxi unimpeded to the departure runway. The extent to which gate holding strategies have financial and environmental benefits hinges on the quantity of fuel that is consumed during surface operations. A pilot of an aircraft may execute the taxi procedure on a single engine or utilize different engine thrust rates during taxi because of a delay. In the following study, we use airline fuel consumption data to estimate aircraft taxi fuel consumption rates during the “unimpeded” and “delayed” portions of taxi time. We find that the fuel consumption attributed to a minute of taxi-out delay is less than that attributed to minute of unimpeded taxi time; for some aircraft types, the fuel consumption rate for a minute of taxi delay is half of that for unimpeded taxi. It is therefore not appropriate, even for rough calculations, to apply nominal taxi fuel consumption rates to convert delayed taxi-out time into fuel burn. On average we find that eliminating taxi delay would reduce overall flight fuel consumption by about 1%. When we consider the savings on an airport-by-airport basis, we find that for some airports the potential reduction from reducing taxi delay is as much as 2%.  相似文献   

4.
Aviation is a mode with high fuel consumption per passenger mile and has significant environmental impacts. It is important to seek ways to reduce fuel consumption by the aviation sector, but it is difficult to improve fuel efficiency during the en-route cruise phase of flight because of technology barriers, safety requirements, and the mode of operations of air transportation. Recent efforts have emphasized the development of innovative Aircraft Ground Propulsion Systems (AGPS) for electrified aircraft taxi operations. These new technologies are expected to significantly reduce aircraft ground-movement-related fuel burn and emissions. This study compares various emerging AGPS systems and presents a comprehensive review on the merits and demerits of each system, followed with the local environmental impacts assessment of these systems. Using operational data for the 10 busiest U.S. airports, a comparison of environmental impacts is performed for four kinds of AGPS: conventional, single engine-on, external, and on-board systems. The results show that there are tradeoffs in fuel and emissions among these emerging technologies. On-board system shows the best performance in the emission reduction, while external system shows the least fuel burn. Compared to single-engine scenario, external AGPS shows the reduction of HC and CO emissions but the increase of NOx emission. When a general indicator is considered, on-board AGPS shows the best potential of reducing local environmental impacts. The benefit-cost analysis shows that both external and on-board systems are worth being implemented and the on-board system appeals to be more beneficial.  相似文献   

5.
Trajectory optimisation has shown good potential to reduce environmental impact in aviation. However, a recurring problem is the loss in airspace capacity that fuel optimal procedures pose, usually overcome with speed, altitude or heading advisories that lead to more costly trajectories. This paper aims at the quantification in terms of fuel and time consumption of implementing suboptimal trajectories in a 4D trajectory context that use required times of arrival at specific navigation fixes. A case study is presented by simulating conflicting Airbus A320 departures from two major airports in Catalonia. It is shown how requiring an aircraft to arrive at a waypoint early or late leads to increased fuel burn. In addition, the efficiency of such methods to resolve air traffic conflicts is studied in terms of both fuel burn and resulting aircraft separations. Finally, various scenarios are studied reflecting various airline preferences with regards to cost and fuel burn, as well as different route and conflict geometries for a broader scope of study.  相似文献   

6.
This paper introduces a linear holding strategy based on prior works on cruise speed reduction, aimed at performing airborne delay at no extra fuel cost, as a complementary strategy to current ground and airborne holding strategies. Firstly, the equivalent speed concept is extended to climb and descent phases through an analysis of fuel consumption and speed from aircraft performance data. This gives an insight of the feasibility to implement the concept, differentiating the case where the cruise flight level initially requested is kept and the case where it can be changed before departure in order to maximize the linear holding time. Illustrative examples are given, where typical flights are simulated using an optimal trajectory generation tool where linear holding is maximized while keeping constant the initially planned fuel. Finally, the effects of linear holding are thoroughly assessed in terms of the vertical trajectory profiles, range of feasible speed intervals and trade-offs between fuel and time. Results show that the airborne delay increases significantly with nearly 3-fold time for short-haul flights and 2-fold for mid-hauls to the cases in prior works.  相似文献   

7.
The aviation community is increasing its attention on the concept of predictability when conducting aviation service quality assessments. Reduced fuel consumption and the related cost is one of the various benefits that could be achieved through improved flight predictability. A lack of predictability may cause airline dispatchers to load more fuel onto aircraft before they depart; the flights would then in turn consume extra fuel just to carry excess fuel loaded. In this study, we employ a large dataset with flight-level fuel loading and consumption information from a major US airline. With these data, we estimate the relationship between the amount of loaded fuel and flight predictability performance using a statistical model. The impact of loaded fuel is translated into fuel consumption and, ultimately, fuel cost and environmental impact for US domestic operations. We find that a one-minute increase in the standard deviation of airborne time leads to a 0.88 min increase in loaded contingency fuel and 1.66 min in loaded contingency and alternate fuel. If there were no unpredictability in the aviation system, captured in our model by eliminating standard deviation in flight time, the reduction in the loaded fuel would between 6.12 and 11.28 min per flight. Given a range of fuel prices, this ultimately would translate into cost savings for US domestic airlines on the order of $120–$452 million per year.  相似文献   

8.
Using the conceptual framework of time–space geography, this paper incorporates both spatio-temporal constraints and household interaction effects into a meaningful measure of the potential of a household to interact with the built environment. Within this context, personal accessibility is described as a measure of the potential ability of individuals within a household not only to reach activity opportunities, but to do so with sufficient time available for participation in those activities, subject to the spatio-temporal constraints imposed by their daily obligations and transportation supply environment. The incorporation of activity-based concepts in the measurement of accessibility as a product of travel time savings not only explicitly acknowledges a temporal dimension in assessing the potential for spatial interaction but also expands the applicability of accessibility consideration to such real-world policy options as the promotion of ride-sharing and trip chaining behaviors. An empirical application of the model system provides an indication of the potential of activity-based modeling approaches to assess the bounds on achievable improvements in accessibility and travel time based on daily household activity patterns. It also provides an assessment of roles for trip chaining and ride-sharing as potentially effective methods to facilitate transportation policy objectives.  相似文献   

9.
The potential for improving the fuel economy of conventional, gasoline-powered automobiles through optimized application of recent technology advances is analyzed. Results are presented at three levels of technical certainty, ranging from technologies already in use to technologies facing technical constraints (such as emissions control problems) which might inhibit widespread use. A fleet-aggregate, engineering-economic analysis is used to estimate a range of U.S. new car fleet average fuel economy levels achievable given roughly 10 years of lead time. Technology cost estimates are compared to fuel savings in order to determine likely cost-effective levels of fuel economy, which are found to range from 39 miles per gallon to 51 miles per gallon depending on technology certainty level. The corresponding estimated increases in average new car price range from $540 to $790 (1993$). Estimated fuel savings payback times average less than 3 years and the cost of conserved energy averages $0.50 per gallon, indicating that these levels of fuel economy improvement are cost-effective over a vehicle lifetime. A vehicle stock turnover model is used to project the reductions in gasoline consumption and associated emissions that would follow if the estimated fuel economy levels are achieved. Potential trade-offs regarding vehicle performance, safety, and emissions are also discussed.  相似文献   

10.
The United States transportation sector consumes 5 billion barrels of petroleum annually to move people and freight around the country by car, truck, train, ship and aircraft, emitting significant greenhouse gases in the process. Making the transportation system more sustainable by reducing these emissions and increasing the efficiency of this multimodal system can be achieved through several vehicle-centric strategies. We focus here on one of these strategies – reducing vehicle mass – and on collecting and developing a set of physics-based expressions to describe the effect of vehicle mass reduction on fuel consumption across transportation modes in the U.S. These expressions allow analysts to estimate fuel savings resulting from vehicle mass reductions (termed fuel reduction value, FRV), across modes, without resorting to specialized software or extensive modeling efforts, and to evaluate greenhouse gas emission and cost implications of these fuel savings. We describe how FRV differs from fuel intensity (FI) and how to properly use both of these metrics, and we provide a method to adjust FI based on mass changes and FRV. Based on this work, we estimate that a 10% vehicle mass reduction (assuming constant payload mass) results in a 2% improvement in fuel consumption for trains and light, medium, and heavy trucks, 4% for buses, and 7% for aircraft. When a 10% vehicle mass reduction is offset by an increase in an equivalent mass of payload, fuel intensity (fuel used per unit mass of payload) increases from 6% to 23%, with the largest increase being for aircraft.  相似文献   

11.
Intercity passenger trips constitute a significant source of energy consumption, greenhouse gas emissions, and criteria pollutant emissions. The most commonly used city-to-city modes in the United States include aircraft, intercity bus, and automobile. This study applies state-of-the-practice models to assess life-cycle fuel consumption and pollutant emissions for intercity trips via aircraft, intercity bus, and automobile. The analyses compare the fuel and emissions impacts of different travel mode scenarios for intercity trips ranging from 200 to 1600 km. Because these modes operate differently with respect to engine technology, fuel type, and vehicle capacity, the modeling techniques and modeling boundaries vary significantly across modes. For aviation systems, much of the energy and emissions are associated with auxiliary equipment activities, infrastructure power supply, and terminal activities, in addition to the vehicle operations between origin/destination. Furthermore, one should not ignore the embodied energy and initial emissions from the manufacturing of the vehicles, and the construction of airports, bus stations, highways and parking lots. Passenger loading factors and travel distances also significantly influence fuel and emissions results on a per-traveler basis. The results show intercity bus is generally the most fuel-efficient mode and produced the lowest per-passenger-trip emissions for the entire range of trip distances examined. Aviation is not a fuel-efficient mode for short trips (<500 km), primarily due to the large energy impacts associated with takeoff and landing, and to some extent from the emissions of ground support equipment associated with any trip distance. However, aviation is more energy efficient and produces less emissions per-passenger-trip than low-occupancy automobiles for trip distances longer than 700–800 km. This study will help inform policy makers and transportation system operators about how differently each intercity system perform across all activities, and provides a basis for future policies designed to encourage mode shifts by range of service. The estimation procedures used in this study can serve as a reference for future analyses of transportation scenarios.  相似文献   

12.
Part 1 describes a fuel consumption model based upon the instantaneous power demand experienced by a vehicle, which has been developed from chassis dynamometer experiments on 177 in-use Australian vehicles. When applied to an individual vehicle, the model provides aggregate fuel consumption estimates for on-road driving which are within 2% of the actual measured fuel usage. Emission rate models for hydrocarbons and nitrogen oxides which are of the same form as the fuel consumption model are also presented. The vehicle model can be applied in any traffic situation provided on-road power demand is known. On-road instantaneous power demand is derived from the vehicle's mass, drag, velocity acceleration and road gradient. In the first part 1929 km and 2778 links of traffic driving pattern data for both urban and non-urban trips are presented. Correlations between the link power and traffic parameters are presented and it is shown that vehicle link fuel consumption and emissions can be accurately calculated from vehicle mass, engine capacity, link average velocity, link average positive inertial power, link altitude change and link trip time. In the non-urban case, link power, and hence fuel consumption and emissions, are not dependent upon positive inertial power. In Part 2 the instantaneous vehicle power demand model is used to develop fuel usage input information to evaluate a simple average velocity model and an elemental model. The performance of these two models is compared with that of the on-road power method by “driving” all three models over 2281 links and 956 km of recorded on-road velocity, acceleration and gradient data. It is shown that all three models can be made to perform well for long trips. The elemental model, however, suffers from an inability to adequately describe the fuel usage of different stop-start manoeuvres and requires some calibration in order to account for cruise speed fluctuations. For short trips, 3.5 km in length or less, the on-road power demand method is superior. Under these conditions, both the simple and elemental models are unable to adequately describe the fuel usage relating to inertial power demands. It is shown that for short trips, inertial power demand does not correlate with average velocity and may range from near zero to up to twice the total trip averaged power.  相似文献   

13.
In the real world, planned aircraft maintenance schedules are often affected by incidents. Airlines may thus need to adjust their aircraft maintenance schedules following the incidents that occur during routine operations. In tradition, such aircraft maintenance schedule adjustment has been performed manually, a process which is neither effective nor efficient, especially when the problem scale is large. In this study, an aircraft maintenance schedule adjustment model is developed, with the objective of minimizing the total system cost, subject to the related operating constraints. The model is formulated as a zero-one integer program and is solved using a mathematical programing solver. The effectiveness of the model is evaluated by application to a case study using data from an aircraft maintenance center in Taiwan. The test results show the proposed model, as well as the scheduling rules abstracted from the results are useful for the decision maker to adjust good maintenance schedules.  相似文献   

14.
We address the robust weekly aircraft routing and retiming problem, which requires determining weekly schedules for a heterogeneous fleet that maximizes the aircraft on-time performance, minimizes the total delay, and minimizes the number of delayed passengers. The fleet is required to serve a set of flights having known departure time windows while satisfying maintenance constraints. All flights are subject to random delays that may propagate through the network. We propose to solve this problem using a hybrid optimization-simulation approach based on a novel mixed-integer nonlinear programming model for the robust weekly aircraft maintenance routing problem. For this model, we provide an equivalent mixed-integer linear programming formulation that can be solved using a commercial solver. Furthermore, we describe a Monte-Carlo-based procedure for sequentially adjusting the flight departure times. We perform an extensive computational study using instances obtained from a major international airline, having up to 3387 flights and 164 aircraft, which demonstrates the efficacy of the proposed approach. Using the simulation software SimAir to assess the robustness of the solutions produced by our approach in comparison with that for the original solutions implemented by the airline, we found that on-time performance was improved by 9.8–16.0%, cumulative delay was reduced by 25.4–33.1%, and the number of delayed passengers was reduced by 8.2–51.6%.  相似文献   

15.
Two of the ways in which air travel affects climate are the emission of carbon dioxide and the creation of high-altitude contrails. One possible impact reduction strategy is to significantly reduce the formation of contrails. This could be achieved by limiting the cruise altitude of aircraft. If implemented, this could severely constrain air space capacity, especially in parts of Europe. In addition, carbon emissions would likely be higher due to less efficient aircraft operation at lower cruise altitudes. This paper describes an analysis of these trade-offs using an air space simulation model as applied to European airspace. The model simulates the flight paths and altitudes of each aircraft and is here used to calculate emissions of carbon dioxide and changes in the journey time. For a one-day Western European traffic sample, calculations suggest annual mean CO2 emissions would increase by only 4% if cruise altitudes were restricted to prevent contrail formation. The change in journey time depended on aircraft type and route, but average changes were less than 1 min. Our analysis demonstrates that altitude restrictions on commercial aircraft could be an effective means of reducing climate change impacts, though it will be necessary to mitigate the increased controller workload conflicts that this will generate.  相似文献   

16.
This paper examines the variation in the value of travel time savings (VTTS) for travelers with a managed lane (ML) option when taking an ordinary trip versus a trip that is unusual in some way. VTTS estimates vary substantially depending on the urgency of the trip made. At the low end, the mean VTTS for a traveler who wants to make extra stops and still arrive on time is approximately 10% higher than that for an ordinary trip. At the high end, a traveler running late for an appointment shows a mean VTTS that is approximately 300% higher than that for an ordinary trip. These estimates vary widely over the population of travelers. In light of these variations, the value of an uncongested travel alternative (such as MLs) is examined and found to be greatly undervalued if using typical VTTS estimates.  相似文献   

17.
Fuel consumption is calculated using a modelling procedure for automobiles travelling on three alternative street patterns designed for a subdivision in Kingston Township, Ontario. The modelling procedure is described. The results indicate that grid and solar superblock street patterns, compared to the existing street pattern, offer small fuel savings to a tripmaker in the portion of the work trip travelled in the subdivision.  相似文献   

18.
We develop a model for integrated analysis of household location and travel choices and investigate it from a theoretical point of view.Each household makes a joint choice of location (zone and house type) and a travel pattern that maximizes utility subject to budget and time constraints. Prices for housing are calculated so that demand equals supply in each submarket. The travel pattern consists of a set of expected trip frequencies to different destinations with different modes. The joint time and budget constraints ensure that time and cost sensitivities are consistent throughout the model. Choosing the entire travel pattern at once, as opposed to treating travel decisions as a series of isolated choices, allows the marginal utilities of trips to depend on which other trips are made.When choosing trip frequencies to destinations, households are assumed to prefer variation to an extent varying with the purpose of the trip. The travel pattern will tend to be more evenly distributed across trip ends the less similar destinations and individual preferences are. These heterogeneities of destinations and individual preferences, respectively, are expressed in terms of a set of parameters to be estimated.  相似文献   

19.
In recent years we have seen important extensions of logit models in behavioural research such as incorporation of preference and scale heterogeneity, attribute processing heuristics, and estimation of willingness to pay (WTP) in WTP space. With rare exception, however, a non-linear treatment of the parameter set to allow for behavioural reality, such as embedded risk attitude and perceptual conditioning of occurrence probabilities attached to specific attributes, is absent. This is especially relevant to the recent focus in travel behaviour research on identifying the willingness to pay for reduced travel time variability, which is the source of estimates of the value of trip reliability that has been shown to take on an increasingly important role in project appraisal. This paper incorporates, in a generalised non-linear (in parameters) logit model, alternative functional forms for perceptual conditioning (known as probability weighting) and risk attitude in the utility function to account for travel time variability, and then derives an empirical estimate of the willingness to pay for trip time variability-embedded travel time savings as an alternative to separate estimates of time savings and trip time reliability. We illustrate the richness of the approach using a stated choice data set for commuter choice between unlabelled attribute packages. Statistically significant risk attitude parameters and parameters underlying decision weights are estimated for multinomial logit and mixed multinomial logit models, along with values of expected travel time savings.  相似文献   

20.
The goodness of fit characteristics of three members of the Wilson-family of gravity models in explaining observed work trip interchanges are examined using an almost 100% sample of journey to work trips in Edmonton, Alberta. Model parameters of the three model types and several variants are estimated for four zone systems ranging in numbers from 22 to 234 zones. Changes in parameter magnitudes and model performance are examined across model types and spatial scales. It is concluded that current gravity models calibrated to cross-sectional data and using only trip end and aggregate travel cost constraints have inadequate explanatory power to justify their use in planning studies. Additional trip end constraints, such as socio-economic stratification, do not yield significant improvements and trip interchange constraints appear to offer the most productive improvement possibilities. The most important factor which is not captured by current cross-sectional models is the timing of urban development which can only reasonably be captured through trip interchange constraints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号