首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The environmental effects of ground-borne vibrations generated due to localised railway defects is a growing concern in urban areas. Frequency domain modelling approaches are well suited for predicting vibration levels on standard railway lines due to track periodicity. However, when considering individual, non-periodic, localised defects (e.g. a rail joint), frequency domain modelling becomes challenging. Therefore in this study, a previously validated, time domain, three-dimensional ground vibration prediction model is modified to analyse such defects. A range of different local (discontinuous) rail and wheel irregularity are mathematically modelled, including: rail joints, switches, crossings and wheel flats. Each is investigated using a sensitivity analysis, where defect size and vehicle speed is varied. To quantify the effect on railroad ground-borne vibration levels, a variety of exposure–response relationships are analysed, including: peak particle velocity, maximum weighted time-averaged velocity and weighted decibel velocity. It is shown that local irregularities cause a significant increase in vibration in comparison to a smooth track, and that the vibrations can propagate to greater distances from the line. Furthermore, the results show that step-down joints generate the highest levels of vibration, whereas wheel flats generate much lower levels. It is also found that defect size influences vibration levels, and larger defects cause greater vibration. Lastly, it is shown that for different defect types, train speed effects are complex, and may cause either an increase or decrease in vibration levels.  相似文献   

2.
Railway traffic is heavily affected by disturbances and/or disruptions, which are often cause of delays and low performance of train services. The impact and the propagation of such delays can be mitigated by relying on automatic tools for rescheduling traffic in real-time. These tools predict future track conflict based on current train information and provide suitable control measures (e.g. reordering, retiming and/or rerouting) by using advanced mathematical models. A growing literature is available on these tools, but their effects on real operations are blurry and not yet well known, due to the very scarce implementation of such systems in practice.In this paper we widen the knowledge on how automatic real-time rescheduling tools can influence train performance when interfaced with railway operations. To this purpose we build up a novel traffic control framework that couples the state-of-the art automatic rescheduling tool ROMA, with the realistic railway traffic simulation environment EGTRAIN, used as a surrogate of the real field. At regular times ROMA is fed with current traffic information measured from the field (i.e. EGTRAIN) in order to predict possible conflicts and compute (sub) optimal control measures that minimize the max consecutive delay on the network. We test the impact of the traffic control framework based on different types of interaction (i.e. open loop, multiple open loop, closed loop) between the rescheduling tool and the simulation environment as well as different combinations of parameter values (such as the rescheduling interval and prediction horizon). The influence of different traffic prediction models (assuming e.g. aggressive versus conservative driving behaviour) is also investigated together with the effects on traffic due to control delays of the dispatcher in implementing the control measures computed by the rescheduling tool.Results obtained for the Dutch railway corridor Utrecht–Den Bosch show that a closed loop interaction outperforms both the multiple open loop and the open loop approaches, especially with large control delays and limited information on train entrance delays and dwell times. A slow rescheduling frequency and a large prediction horizon improve the quality of the control measure. A limited control delay and a conservative prediction of train speed help filtering out uncertain traffic dynamics thereby increasing the effectiveness of the implemented measures.  相似文献   

3.
The uncertainty associated with public transport services can be partially counteracted by developing real‐time models to predict downstream service conditions. In this study, a hybrid approach for predicting bus trajectories by integrating multiple predictors is proposed. The prediction model combines schedule, instantaneous and historical data. The contribution of each predictor as well as values of respective parameters is estimated by minimizing the prediction error using a linear regression heuristic. The hybrid method was applied to five bus routes in Stockholm, Sweden, and Brisbane, Australia. The results indicate that the hybrid method consistently outperforms the timetable and delay conservation prediction method for different route layouts, passenger demands and operation practices. Model validation confirms model transferability and real‐time applicability. Generating more accurate predictions can help service users adjust their travel plans and service providers to deploy proactive management and control strategies to mitigate the negative effects of service disturbances. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
We propose machine learning models that capture the relation between passenger train arrival delays and various characteristics of a railway system. Such models can be used at the tactical level to evaluate effects of various changes in a railway system on train delays. We present the first application of support vector regression in the analysis of train delays and compare its performance with the artificial neural networks which have been commonly used for such problems. Statistical comparison of the two models indicates that the support vector regression outperforms the artificial neural networks. Data for this analysis are collected from Serbian Railways and include expert opinions about the influence of infrastructure along different routes on train arrival delays.  相似文献   

5.
The demand for rail freight transportation is a continuously changing process over space and time and is affected by many quantitative and qualitative factors. In order to develop a more rational transport planning process to be followed by railway organizations, there is a need to accurately forecast freight demand under a dynamic and uncertain environment. In conventional linear regression analysis, the deviations between the observed and the estimated values are supposed to be due to observation errors. In this paper, taking a different perspective, these deviations are regarded as the fuzziness of the system's structure. The details of fuzzy linear regression method are put forward and discussed in the paper. Based on an analyzes of the characteristics of the rail transportation problem, the proposed model was successfully applied to a real example from China. The results of that application are also presented here.  相似文献   

6.
In this work, the efficiency of absorbing barriers for the mitigation of ground vibrations induced by railway traffic has been evaluated by means of two different experimental campaigns conducted in situ, along the newly-built, high-speed railway line that connects the Italian cities of Milan and Bologna. In the first stage of testing, a series of ideal barriers created from unsupported empty trenches were tested to assess the effects of barrier depth on their efficiency in reducing vertical ground accelerations. The second stage of testing was performed to investigate the efficiency of a full-scale prototype barrier, made of a 2-meter-deep trench supported by two precast reinforced concrete plates connected by steel bars, during transit of an ETR 500 train at a speed of 120 km/h.  相似文献   

7.
Noise and vibration are two of the main problems associated with railways in residential areas. To ensure quality of life and well-being of inhabitants living in the vicinity of railway paths, it is important to evaluate, understand, control and regulate railway noise and vibration. Much attention has been focused on the impact of noise from railway traffic but the consideration of railway-induced vibration has often been neglected. This paper aims to provide policy guidance based on results obtained from the analyses of relationships estimated from ordinal logit models between human response, railway noise exposure and railway vibration exposure. This was achieved using data from case studies comprised of face-to-face interviews (N = 931), internal vibration measurements (N = 755), and noise calculations (N = 688) collected within the study “Human Response to Vibration in Residential Environments” by the University of Salford, UK. Firstly, the implications of neglecting vibration in railway noise policies are investigated. The findings suggest that it is important to account for railway induced vibrations in future noise and transport policies, as neglecting vibrations results in an underestimation of people highly annoyed by noise. Secondly, implications of neglecting different types of railway sources are presented. It was found that the impact of noise and vibration form maintenance operations should be better understood and should be taken into account when assessing the environmental impact of railways in residential environments. Finally, factors that were found to influence railway vibration annoyance are presented and expressed as weightings. The data shows that factors specific to a particular residential area should also be taken into account in future vibration policies as the literature shows that attitudinal, socio-demographic and situational factors have a large influence on vibration annoyance responses. This work will be of interest to researchers and environmental health practitioners involved in the assessment of vibration complaints, as well as to policy makers, planners and consultants involved in the design of buildings and railways.  相似文献   

8.
Train dispatching is vital for the punctuality of train services, which is critical for a train operating company (TOC) to maintain its competitiveness. Due to the introduction of competition in the railway transport market, the issue of discrimination is attracting more and more attention. This paper focuses on delivering non-discriminatory train dispatching solutions while multiple TOCs are competing in a rail transport market, and investigating impacting factors of the inequity of train dispatching solutions. A mixed integer linear programming (MILP) model is first proposed, in which the inequity of competitors (i.e., trains and TOCs) is formalized by a set of constraints. In order to provide a more flexible framework, a model is further reformulated where the inequity of competitors is formalized as the maximum individual deviation of competitors’ delay cost from average delay cost in the objective function. Complex infrastructure capacity constraints are considered and modelled through a big M-based approach. The proposed models are solved by a standard MILP solver. A set of comprehensive experiments is conducted on a real-world dataset adapted from the Dutch railway network to test the efficiency, effectiveness, and applicability of the proposed models, as well as determine the trade-off between train delays and delay equity.  相似文献   

9.
This study presents an alternative method for estimating gravity models by multiple linear regression that is based on proxy variables, thus circumventing the endogeneity problems arising when least-squares estimators are used. The proxy variable approach generates consistent estimators for a gravity model without endogeneity bias. The presence of endogeneity is tested for using statistical tests developed specifically for our application.We conclude that proxy variables eliminate the endogeneity and produce consistent estimators in gravity models estimated using least squares. We also find, however, that endogeneity bias has no significant impact either on gravity model prediction or on urban transportation system planning processes based on such models.  相似文献   

10.
Short‐term traffic flow prediction in urban area remains a difficult yet important problem in intelligent transportation systems. Current spatio‐temporal‐based urban traffic flow prediction techniques trend aims to discover the relationship between adjacent upstream and downstream road segments using specific models, while in this paper, we advocate to exploit the spatial and temporal information from all available road segments in a partial road network. However, the available traffic states can be high dimensional for high‐density road networks. Therefore, we propose a spatio‐temporal variable selection‐based support vector regression (VS‐SVR) model fed with the high‐dimensional traffic data collected from all available road segments. Our prediction model can be presented as a two‐stage framework. In the first stage, we employ the multivariate adaptive regression splines model to select a set of predictors most related to the target one from the high‐dimensional spatio‐temporal variables, and different weights are assigned to the selected predictors. In the second stage, the kernel learning method, support vector regression, is trained on the weighted variables. The experimental results on the real‐world traffic volume collected from a sub‐area of Shanghai, China, demonstrate that the proposed spatio‐temporal VS‐SVR model outperforms the state‐of‐the‐art. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
The train operational plan (TOP) plays a crucial role in the efficient and effective operation of an urban rail system. We optimize the train operational plan in a special network layout, an urban rail corridor with one terminal yard, by decomposing it into two sub-problems, i.e., the train departure profile optimization and the rolling stock circulation optimization. The first sub-problem synthetically optimizes frequency setting, timetabling and the rolling stock circulation at the terminal without a yard. The maximum headway function is generated to ensure the service of the train operational plan without considering travel demand, then we present a model to minimize the number of train trips, and design a heuristic algorithm to maximize the train headway. On the basis of a given timetable, the rolling stock circulation optimization only involves the terminal with a yard. We propose a model to minimize the number of trains and yard–station runs, and an algorithm to find the optimal assignment of train-trip pair connections is designed. The computational complexities of the two algorithms are both linear. Finally, a real case study shows that the train operational plan developed by our approach enables a better match of train headway and travel demand, and reduces the operational cost while satisfying the requirement of the level of service.  相似文献   

12.
This paper applies artificial neural network to predict hourly air pollutant concentrations near an arterial in Guangzhou, China. Factors that influence pollutant concentrations are classified into four categories: traffic-related, background concentration, meteorological and geographical. The hourly averages of these influential factors and concentrations of carbon monoxide, nitrogen dioxide, particular matter and ozone were measured at three selected sites near the arterial using vehicular automatic monitoring equipments. Models based on back-propagation neural network were trained, validated and tested using the collected data. It is demonstrated that the models are able to produce accurate prediction of hourly concentrations of the pollutants respectively more than 10 h in advance. A comparison study shows that the neural network models outperform multiple linear regression models and the California line source dispersion model.  相似文献   

13.
The objective of VERSIT+ LD is to predict traffic stream emissions for light-duty vehicles in any particular traffic situation. With respect to hot running emissions, VERSIT+ LD consists of a set of statistical models for detailed vehicle categories that have been constructed using multiple linear regression analysis. The aim is to find empirical relationships between mean emission factors, including confidence intervals, and a limited number of speed–time profile and vehicle related variables. VERSIT+ is a versatile model that has already been used in different projects at different geographical levels. Compared to COPERT IV, the VERSIT+ average speed algorithms provide increased accuracy with respect to the prediction of emissions in specific traffic situations.  相似文献   

14.
Provision of accurate bus arrival information is vital to passengers for reducing their anxieties and waiting times at bus stop. This paper proposes models to predict bus arrival times at the same bus stop but with different routes. In the proposed models, bus running times of multiple routes are used for predicting the bus arrival time of each of these bus routes. Several methods, which include support vector machine (SVM), artificial neural network (ANN), k nearest neighbours algorithm (k-NN) and linear regression (LR), are adopted for the bus arrival time prediction. Observation surveys are conducted to collect bus running and arrival time data for validation of the proposed models. The results show that the proposed models are more accurate than the models based on the bus running times of single route. Moreover, it is found that the SVM model performs the best among the four proposed models for predicting the bus arrival times at bus stop with multiple routes.  相似文献   

15.
Planning and operating railway transportation systems is an extremely hard task due to the combinatorial complexity of the underlying discrete optimization problems, the technical intricacies, and the immense size of the problem instances. Because of that, however, mathematical models and optimization techniques can result in large gains for both railway customers and operators, e.g., in terms of cost reductions or service quality improvements. In the last years a large and growing group of researchers in the OR community have devoted their attention to this domain developing mathematical models and optimization approaches to tackle many of the relevant problems in the railway planning process. However, there is still a gap to bridge between theory and practice (e.g. Cacchiani et al., 2014; Borndörfer et al., 2010), with a few notable exceptions. In this paper we address three individual success stories, namely, long-term freight train routing (part I), mid-term rolling stock rotation planning (part II), and real-time train dispatching (part III). In each case, we describe real-life, successful implementations. We will discuss the individual problem setting, survey the optimization literature, and focus on particular aspects addressed by the mathematical models. We demonstrate on concrete applications how mathematical optimization can support railway planning and operations. This gives proof that mathematical optimization can support the planning of railway resources. Thus, mathematical models and optimization can lead to a greater efficiency of railway operations and will serve as a powerful and innovative tool to meet recent challenges of the railway industry.  相似文献   

16.
17.
结合上海市郊铁路扩改建工程实例,为了更大程度地发挥城市公共交通整体化效应,提出将市郊铁路纳入城市公共交通一体化运营的建议和构想,分析探讨了该一体化运营的经营管理模式、票务、行车和换乘等方面的实施方法。  相似文献   

18.
Train dwell time is one of the most unpredictable components of railway operations, mainly because of the varying volumes of alighting and boarding passengers. However, for reliable estimations of train running times and route conflicts on main lines, it is necessary to obtain accurate estimations of dwell times at the intermediate stops on the main line, the so‐called short stops. This is a great challenge for a more reliable, efficient and robust train operation. Previous research has shown that the dwell time is highly dependent on the number of boarding and alighting passengers. However, these numbers are usually not available in real time. This paper discusses the possibility of a dwell time estimation model at short stops without passenger demand information by means of a statistical analysis of track occupation data from the Netherlands. The analysis showed that the dwell times are best estimated for peak and off‐peak hours separately. The peak‐hour dwell times are estimated using a linear regression model of train length, dwell times at previous stops and dwell times of the preceding trains. The off‐peak‐hour dwell times are estimated using a non‐parametric regression model, in particular, the k‐nearest neighbor model. There are two major advantages of the proposed estimation models. First, the models do not need passenger flow data, which is usually impossible to obtain in real time in practice. Second, detailed parameters of rolling stock configuration and platform layout are not required, which makes the model more generic and eases implementation. A case study at Dutch railway stations shows that the estimation accuracy is 85.8%–88.5% during peak hours and 80.1% during off‐peak hours, which is relatively high. We conclude that the estimation of dwell times at short stop stations without passenger data is possible. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Ground level ozone is a criteria pollutant that is significantly affected by transportation patterns. Ozone action day advisories represent one type of voluntary ozone-abating program operating in urban areas where ozone pollution is concentrated. When forecasts predict that ground level ozone will exceed healthy levels, public advisories urge citizens to voluntarily choose public transportation as a means of eliminating automobile trips and reducing mobile emissions. To obtain credit for emission reductions spurred by voluntary programs, states must provide verifiable reduction estimates. This paper applies a fixed effects regression model to a panel of hourly Chicago Transit Authority train ridership data to evaluate the potential effects of Ozone Action Day advisories in Chicago from 2002 to 2003. Findings show that while the overall effect of ozone action days on ridership is not significant, there are statistically significant changes in hourly ridership patterns that indicate a more complex relationship between the public advisories and travel behavior.  相似文献   

20.
In recent years, rapid advances in information technology have led to various data collection systems which are enriching the sources of empirical data for use in transport systems. Currently, traffic data are collected through various sensors including loop detectors, probe vehicles, cell-phones, Bluetooth, video cameras, remote sensing and public transport smart cards. It has been argued that combining the complementary information from multiple sources will generally result in better accuracy, increased robustness and reduced ambiguity. Despite the fact that there have been substantial advances in data assimilation techniques to reconstruct and predict the traffic state from multiple data sources, such methods are generally data-driven and do not fully utilize the power of traffic models. Furthermore, the existing methods are still limited to freeway networks and are not yet applicable in the urban context due to the enhanced complexity of the flow behavior. The main traffic phenomena on urban links are generally caused by the boundary conditions at intersections, un-signalized or signalized, at which the switching of the traffic lights and the turning maneuvers of the road users lead to shock-wave phenomena that propagate upstream of the intersections. This paper develops a new model-based methodology to build up a real-time traffic prediction model for arterial corridors using data from multiple sources, particularly from loop detectors and partial observations from Bluetooth and GPS devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号