首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper we describe the methods used to develop the open source Aviation Emissions Inventory Code and produce a global emissions inventory for scheduled civil aviation, with quantified uncertainty. We estimate that in 2005, scheduled civil aviation was responsible for 180.6 Tg of fuel burn, which agrees to within 4% of other published emissions inventories for 2004 and 2006. By comparing the Aviation Emissions Inventory Code with flight data records, we show that the mean bias in predicted fuel burn at the airport-pair level is +1% for an ensemble of 132 flights, and less than 10% for 5 of the 6 aircraft types used in the validation.  相似文献   

2.
Reducing fuel consumption is a unifying goal across the aviation industry. One fuel-saving opportunity for airlines is the possibility of reducing discretionary fuel loading by dispatchers. In this study, we propose a novel discretionary fuel estimation approach that can assist dispatchers with better discretionary fuel loading decisions. Based on the analysis on our study airline, our approach is found to substantially reduce unnecessary discretionary fuel loading while maintaining the same safety level compared to the current fuel loading practice. The idea is that by providing dispatchers with more accurate information and better recommendations derived from flight records, unnecessary fuel loading and corresponding cost-to-carry could both be reduced. We apply ensemble learning techniques to improve fuel burn prediction and construct prediction intervals (PIs) to capture the uncertainty of model predictions. The upper bound of a PI can then be used for discretionary fuel loading. The potential benefit of this approach is estimated to be $61.5 million in fuel savings and 428 million kg of CO2 reduction per year for our study airline. This study also builds a link between discretionary fuel estimation and aviation system predictability in which the proposed models can also be used to predict benefits from reduced fuel loading enabled by improved Air Traffic Management (ATM) targeting on improved system predictability.  相似文献   

3.
This paper quantifies the impact of aircraft emissions on local air quality and climate change. Aircraft emissions during the cruise cycle and the landing/take-off cycle are considered. A tool is developed that computes emission values using real-time air traffic data derived from various databases. Emissions include carbon dioxide, hydrocarbons, carbon monoxide and nitrogen oxides. The overall output is a detailed ‘emissions map’ of a given territory that enables the identification of critical emission spots including routes, airports, season, aircraft type and flight category. The method can be used for real-time monitoring of airline emissions and for policy analysis. The proposed tool and resulting outputs are illustrated in the case of the Greek airport system using domestic, international and overflights. Demand volatility driven mainly by tourism and its impact on emissions is assessed.  相似文献   

4.
When jetliners fly in the stratosphere, their emissions tend to be longer-lived and therefore have greater environmental impact. Since the altitude of the tropopause is not consistent and can be as low as 23,000 ft., cruising flights may have a great chance to fly into the stratosphere. In this paper, we present a simple and rapid method to estimate the extent of US commercial passenger and cargo flight that currently occurs in the stratosphere, based on publicly available historical data from 2008 to 2012. We model the vertical profile of a flight and compare it with the height of the tropopause along its route. Our analysis covers 78% of the total travelled distance reported by the United States Bureau of Transportation Statistics, and shows that these flights burnt ∼11 million tons of fuel annually, or ∼31% of cruise fuel, in the stratosphere between 2008 and 2012. Our results also show that the chance of flying into stratosphere varies by area, but flights within the contiguous United States tend to stay below the stratosphere. Moreover, the stratosphere fuel burn of Asia-US flights may be significantly reduced by taking jet stream routes.  相似文献   

5.
This paper provides an algorithm to minimize the fixed ordering, purchase, and inventory-carrying costs associated with bunker fuel together with ship time costs; and environmental costs associated with greenhouse gas emissions. It determines the optimum ship speed, bunkering ports, and amounts of bunker fuel for a given ship’s route. To solve the problem, we use an epsilon-optimal algorithm by deriving a property. The algorithm is illustrated by applying it to typical sample data obtained and the effects of bunker prices, carbon taxes, and ship time costs on the ship speed are analyzed. The results indicate that the ship speed and CO2 emissions are highly sensitive to the factors considered.  相似文献   

6.
In this paper, typical flight paths, fuel burn and carbon dioxide (CO2) emissions are computed using a rich data set and two estimation approaches: (i) a clustering and landmark registration technique and (ii) a method based on the EUROCONTROL’s Base of Aircraft Data (BADA) performance model. Clustering is employed to extract flight characteristics and organize altitude profiles accordingly. Our flight path and CO2 emissions analysis focuses on the Climb-Cruise-Descent (CCD) cycle, since different operational conditions during the Landing and Take-off cycle may result in significant deviations in terms of fuel burn and CO2 emissions and different modeling assumptions and approaches should be adopted. The key features of the CCD cycle are the flight distance, the aircraft type and the flight direction. Path segmentation and landmark registration are employed for path representation and smoothening of discontinuities. The paths estimated by the above method are compared to those obtained by the point mass BADA model. Noticeable deviations in the resulting estimates of the operational characteristics are found. Higher deviations in prediction errors are found in the climb and descent duration and the rate of climb and descent. The typical altitude profiles obtained by the two methods are used to determine fuel burn and CO2 emissions. The difference in the resulting estimates are less stark; on a fleet-wide level the fuel burn of the relevant typical profiles differ by 7%. Emission maps of the U.S. airspace enabling the identification of critical emission spots including routes, airports, seasons and aircraft type are constructed.  相似文献   

7.
This paper examines the influence of compressed natural gas, liquefied petroleum gas and gasoline fuel on the exhaust emissions and the fuel consumption of a spark-ignition engine powered passenger car. The vehicle was driven according to the urban driving cycle and extra urban driving cycle speed profiles with the warmed-up engine. Cause and effect based analysis reveals potential for using different fuels to reduce vehicle emission and deficiencies associated with particular fuels. The highest tank to wheel efficiency and the lowest CO2 emission are observed with the natural gas fuelled vehicle, that also featured the highest total hydrocarbon emissions and high NOx emissions because of fast three way catalytic converter aging due the use of the compressed natural gas. Retrofitted liquefied petroleum gas fuel supply systems feature the greatest air-fuel ratio variations that result in the lowest TtW efficiency and in the highest NOx emissions of the liquefied gas fuelled vehicle.  相似文献   

8.
The growth of vehicle sales and use internationally requires the consumption of significant quantities of energy and materials, and contributes to the deterioration of air-quality and climate conditions. Advanced propulsion systems and electric drive vehicles have substantially different characteristics and impacts. They require life cycle assessments and detailed comparisons with gasoline powered vehicles which, in turn, should lead to critical updates of traditional models and assumptions. For a comprehensive comparison of advanced and traditional light duty vehicles, a model is developed that integrates external costs, including emissions and time losses, with societal and consumer life cycle costs. Life cycle emissions and time losses are converted into costs for seven urban light duty vehicles. The results, which are based on vehicle technology characteristics and transportation impacts on environment, facilitate vehicle comparisons and support policy making in transportation. Substantially, more sustainable urban transportation can be achieved in the short-term by promoting policies that increase vehicle occupancy; in the intermediate-term by increasing the share of hybrid vehicles in the car market and in the long-term by the widespread use of electric vehicles. A sensitivity-analysis of life cost results revealed that vehicle costs change significantly for different geographical areas depending on vehicle taxation, pricing of gasoline, electric power and pollution. Current practices in carbon and air quality pricing favor oil and coal based technologies. However, increasing the cost of electricity from coal and other fossil fuels would increase the variable cost for electric vehicles, and tend to favor the variable cost of hybrid vehicles.  相似文献   

9.
Microscopic emission models are widely used in emission estimation and environment evaluation. Traditionally, microscopic traffic simulation models and probe vehicles are two sources of inputs to a microscopic emission model. However, they are not effective in reflecting all vehicles' real‐world operating conditions. Using each vehicle's spot speed data recorded by detectors, this paper provides a new method to estimate all vehicles' real‐world activities data. These data can then be used as inputs to a microscopic emission model to estimate vehicle fuel consumption and emissions. The main task is to reconstruct trajectory of each vehicle and calculate second‐by‐second speed and acceleration from the activities data. The Next Generation Simulation dataset and the Comprehensive Modal Emissions Model are used in this study to calculate and analyze the emission results for both lane‐level and link‐level. The results showed that using the proposed method for estimating vehicle fuel consumption and emissions is promising. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
The US Federal Aviation Administration (FAA) has a goal that one billion gallons of renewable jet fuel is consumed by the US aviation industry each year from 2018. We examine the economic and emissions impacts of this goal using renewable fuel produced from a Hydroprocessed Esters and Fatty Acids (HEFA) process from renewable oils. Our approach employs an economy-wide model of economic activity and energy systems and a detailed partial equilibrium model of the aviation industry. If soybean oil is used as a feedstock, we find that meeting the aviation biofuel goal in 2020 will require an implicit subsidy from airlines to biofuel producers of $2.69 per gallon of renewable jet fuel. If the aviation goal can be met by fuel from oilseed rotation crops grown on otherwise fallow land, the implicit subsidy is $0.35 per gallon of renewable jet fuel. As commercial aviation biofuel consumption represents less than 2% of total fuel used by this industry, the goal has a small impact on the average price of jet fuel and carbon dioxide emissions. We also find that, under the pathways we examine, the cost per tonne of CO2 abated due to aviation biofuels is between $50 and $400.  相似文献   

11.
Municipal fleet vehicle purchase decisions provide a direct opportunity for cities to reduce emissions of greenhouse gases (GHG) and air pollutants. However, cities typically lack comprehensive data on total life cycle impacts of various conventional and alternative fueled vehicles (AFV) considered for fleet purchase. The City of Houston, Texas, has been a leader in incorporating hybrid electric (HEV), plug-in hybrid electric (PHEV), and battery electric (BEV) vehicles into its fleet, but has yet to adopt any natural gas-powered light-duty vehicles. The City is considering additional AFV purchases but lacks systematic analysis of emissions and costs. Using City of Houston data, we calculate total fuel cycle GHG and air pollutant emissions of additional conventional gasoline vehicles, HEVs, PHEVs, BEVs, and compressed natural gas (CNG) vehicles to the City's fleet. Analyses are conducted with the Greenhouse Gases, Regulated Emissions, and Energy use in Transportation (GREET) model. Levelized cost per kilometer is calculated for each vehicle option, incorporating initial purchase price minus residual value, plus fuel and maintenance costs. Results show that HEVs can achieve 36% lower GHG emissions with a levelized cost nearly equal to a conventional sedan. BEVs and PHEVs provide further emissions reductions, but at levelized costs 32% and 50% higher than HEVs, respectively. CNG sedans and trucks provide 11% emissions reductions, but at 25% and 63% higher levelized costs, respectively. While the results presented here are specific to conditions and vehicle options currently faced by one city, the methods deployed here are broadly applicable to informing fleet purchase decisions.  相似文献   

12.
This study investigates the impacts of traffic signal timing optimization on vehicular fuel consumption and emissions at an urban corridor. The traffic signal optimization approach proposed integrates a TRANSIMS microscopic traffic simulator, the VT-Micro model (a microscopic emission and fuel consumption estimation model), and a genetic algorithm (GA)-based optimizer. An urban corridor consisting of four signalized intersections in Charlottesville, VA, USA, is used for a case study. The result of the case study is then compared with the best traffic signal timing plan generated by Synchro using the TRANSIMS microscopic traffic simulator. The proposed approach achieves much better performance than that of the best Synchro solution in terms of air quality, energy and mobility measures: 20% less network-wide fuel consumption, 8–20% less vehicle emissions, and nearly 27% less vehicle-hours-traveled (VHT).  相似文献   

13.
The Rakha-Pasumarthy-Adjerid (RPA) car-following model has been demonstrated to successfully replicate empirical driver car-following behavior. However, the validity of this model for fuel consumption and emission (FC/EM) estimation has yet to be studied. This paper attempts to address this research need by analyzing the applicability of the model for FC/EM estimation and comparing its performance to other state-of-practice car-following models; namely, the Gipps, Fritzsche and Wiedemann models. Naturalistic empirical data are employed to generate ground truth car-following events. The model-generated second-by-second Vehicle Specific Power (VSP) distributions for each car-following event are then compared to the empirical distributions. The study demonstrates that the generation of realistic VSP distributions is critical in producing accurate FC/EM estimates and that the RPA model outperforms the other three models in producing realistic vehicle trajectory VSP distributions and robust FC/EM estimates. This study also reveals that the acceleration behavior within a car-following model is one of the major contributors to producing realistic VSP distributions. The study further demonstrates that the use of trip-aggregated results may produce erroneous conclusions given that second-by-second errors may cancel each other out, and that lower VSP distribution errors occasionally result in greater bias in FC/EM estimates given the large deviation of the distribution at high VSP levels. Finally, the results of the study demonstrate the validity of the INTEGRATION micro-simulator, given that it employs the RPA car-following model, in generating realistic VSP distributions, and thus in estimating fuel consumption and emission levels.  相似文献   

14.
Τhis study demonstrates the combination of a microscopic traffic simulator (AIMSUN) with an instantaneous emissions model (AVL CRUISE) to investigate the impact of traffic congestion on fuel consumption on an urban arterial road. The micro traffic model was enhanced by an improved car-following law according to Morello et al. (2014) and was calibrated to replicate measured driving patterns over an urban corridor in Turin, Italy, operating under adaptive urban traffic control (UTC). The method was implemented to study the impact of congestion on fuel consumption for the category of Euro 5 diesel <1.4 l passenger cars. Free flow and congested conditions led to respective consumption differences of −25.8% and 20.9% over normal traffic. COPERT 5 rather well predicted the impact of congestion but resulted to a much lower relative reduction in free flow conditions. Start and stop system was estimated to reduce consumption by 6% and 11.9% under normal and congested conditions, respectively. Using the same modelling approach, UTC was found to have a positive impact on CO2 emissions of 8.1% and 4.5% for normal and congested conditions, respectively, considering the Turin vehicle fleet mix for the year 2013. Overall, the study demonstrates that the combination of detailed and validated micro traffic and emissions models offers a powerful combination to study traffic and powertrain impacts on greenhouse gas and fuel consumption of on road vehicles over a city network.  相似文献   

15.
This paper describes tailpipe emission results generated by the Vehicle Performance and Emissions Monitoring system (VPEMS). VPEMS integrates on‐board emissions and vehicle/driver performance measurements with positioning and communications technologies, to transmit a coherent spatio‐temporally referenced dataset to a central base station in near real time. These results focus on relationships between tailpipe emissions of CO, CO2, NOx and speed and acceleration. Emissions produced by different driving modes are also presented. Results are generally as one would expect, showing variation between vehicle speed, vehicle acceleration and emissions. Data is based upon a test run in central London on urban streets with speeds not exceeding about 65 km/h. The results presented demonstrate the capabilities of the system. Various issues remain with regard to validation of the data and expansion of the system capability to obtain additional vehicle performance data.  相似文献   

16.
Exhaust emissions and fuel consumption of Heavy Duty Vehicles (HDVs) in urban and port areas were evaluated through a dedicated investigation. The HDV fleet composition and traffic driving from highways to the maritime port of Genoa and crossing the city were analysed. Typical urban trips linking highway exits to port gates and HDV mission profiles within the port area were defined. A validation was performed through on-board instrumentation to record HDV instantaneous speeds in urban and port zones. A statistical procedure enabled the building-up of representative speed patterns. High contrasts and specific driving conditions were observed in the port area. Representative speed profiles were then used to simulate fuel consumption and emissions for HDVs, using the Passenger car and Heavy duty Emission Model (PHEM). Complementary estimations were derived from Copert and HBEFA methodologies, allowing the comparison of different calculation approaches and scales. Finally, PHEM was implemented to assess the performances of EGR or SCR systems for NOX reduction in urban driving and at very low speeds.The method and results of the investigation are presented. Fuel consumption and pollutant emission estimation through different methodologies are discussed, as well as the necessity of characterizing very local driving conditions for appropriate assessment.  相似文献   

17.
Demand for commercial air travel has been increasing over the years and recent forecasts indicate similar future trends. New aircraft with enhanced design features are being built and entering the airline service globally. These enhancements aim to ensure continued safety, efficiency, performance and prolonged life serviceability. However, these new enhancements often neglect the impact of the changing anthropometric characteristics of the passenger. Past studies have identified increasing trends in the average weight, height and other anthropometrical and biometrical measures of people at a global scale. However, many are limited to only exploring the ramifications primarily from the perspective of passenger experience. This paper highlights the importance of considering passengers’ anthropometric characteristics from a holistic perspective and identifies gaps for future research.  相似文献   

18.
The European aviation industry is undergoing a process of liberalisation. One of the important lessons of American deregulation was that the industry is not perfectly contestable. One implication of this is that actual competition on a route is important in order to be able to secure the benefits of deregulation or liberalisation. Another is that effective competition policy is important in order to prevent anti-competitive mergers or predatory behaviour. This paper reviews the merger investigations in European aviation which have accompanied the search by carriers to secure the benefits of market power, and considers the extent of route competition within the European Community and its relationship to the different route licensing policies of different national governments. The paper considers the extent of present competition on the busiest routes, and stresses the importance of cabotage rights in opening up the European market to effective competition.  相似文献   

19.
This paper proposes a novel short/medium-term prediction method for aviation emissions distribution in en route airspace. An en route traffic demand model characterizing both the dynamics and the fluctuation of the actual traffic demand is developed, based on which the variation and the uncertainty of the short/medium-term traffic growth are predicted. Building on the demand forecast the Boeing Fuel Flow Method 2 is applied to estimate the fuel consumption and the resulting aviation emissions in the en route airspace. Based on the traffic demand prediction and the en route emissions estimation, an aviation emissions prediction model is built, which can be used to forecast the generation of en route emissions with uncertainty limits. The developed method is applied to a real data set from Hefei Area Control Center for the en route emission prediction in the next 5 years, with time granularities of both months and years. To validate the uncertainty limits associated with the emission prediction, this paper also presents the prediction results based on future traffic demand derived from the regression model widely adopted by FAA and Eurocontrol. The analysis of the case study shows that the proposed method can characterize well the dynamics and the fluctuation of the en route emissions, thereby providing satisfactory prediction results with appropriate uncertainty limits. The prediction results show a gradual growth at an average annual rate of 7.74%, and the monthly prediction results reveal distinct fluctuation patterns in the growth.  相似文献   

20.
Intercity passenger trips constitute a significant source of energy consumption, greenhouse gas emissions, and criteria pollutant emissions. The most commonly used city-to-city modes in the United States include aircraft, intercity bus, and automobile. This study applies state-of-the-practice models to assess life-cycle fuel consumption and pollutant emissions for intercity trips via aircraft, intercity bus, and automobile. The analyses compare the fuel and emissions impacts of different travel mode scenarios for intercity trips ranging from 200 to 1600 km. Because these modes operate differently with respect to engine technology, fuel type, and vehicle capacity, the modeling techniques and modeling boundaries vary significantly across modes. For aviation systems, much of the energy and emissions are associated with auxiliary equipment activities, infrastructure power supply, and terminal activities, in addition to the vehicle operations between origin/destination. Furthermore, one should not ignore the embodied energy and initial emissions from the manufacturing of the vehicles, and the construction of airports, bus stations, highways and parking lots. Passenger loading factors and travel distances also significantly influence fuel and emissions results on a per-traveler basis. The results show intercity bus is generally the most fuel-efficient mode and produced the lowest per-passenger-trip emissions for the entire range of trip distances examined. Aviation is not a fuel-efficient mode for short trips (<500 km), primarily due to the large energy impacts associated with takeoff and landing, and to some extent from the emissions of ground support equipment associated with any trip distance. However, aviation is more energy efficient and produces less emissions per-passenger-trip than low-occupancy automobiles for trip distances longer than 700–800 km. This study will help inform policy makers and transportation system operators about how differently each intercity system perform across all activities, and provides a basis for future policies designed to encourage mode shifts by range of service. The estimation procedures used in this study can serve as a reference for future analyses of transportation scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号