首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
为了解沿海软土地区PHC管桩在地震作用下的动力反应、桩-土动力相互作用特性以及破坏模式,开展PHC管桩-土-结构模型体系的地震模拟振动台试验研究。通过输入3种不同地震波,并逐渐增加地震波峰值,研究预应力度、土体特性对模型体系的地震响应与破坏模式的影响。研究结果表明:土体饱和与否对模型体系的动力特性和地震响应影响较大,PHC管桩的预应力对其动力特性有一定影响,破坏模式也不相同;土体未饱和时,基本烈度地震作用下PHC管桩的一阶频率下降不大,土体饱和时,随着地震波激励的增加,模型体系的自振频率逐渐下降、阻尼比逐渐增大,PHC管桩-土-结构间的相互作用加大,结构开始损伤破坏,频率最大下降至初始频率的50%;预应力的存在可较显著地减缓地震作用下结构的损伤破坏;加速度峰值越大或者土体越深,孔压比越大,最大超过1.0,并出现液化现象,且液化持续时间远大于地震波持时。研究结果可为沿海软土地区PHC管桩的应用和规范的制定提供参考。  相似文献   

2.
基于非液化场地-群桩基础-上部结构大型振动台试验,建立了非液化场地-桩-结构体系地震响应数值计算模型,在分析桩-结构体系动力响应基础上,深入探讨动力荷载下非液化场地中的桩基失效模式。通过对比数值计算模型所得典型地震响应结果与试验结果,验证了数值计算模型的有效性和合理性,进一步探讨了非液化地基中土-结构体系地震响应规律,重点关注在地震作用下桩基失效过程及桩基-结构体系地震破坏模式。结果表明:在地震作用下,土体加速度在松砂层中不再放大,在最上部出现一定放大,且桩基加速度反应也有相似规律;各深度处土体动剪应力-动剪应变滞回曲线表现出对角线斜率小幅减小的趋势,说明等效剪切模量也出现不同程度的降低,也即地基各处土体抗剪强度均有一定下降;桩身最大弯矩出现在桩身中下部,在桩头与土层交界面附近桩身剪力较大,说明可能发生桩头剪切破坏或桩身弯曲破坏。  相似文献   

3.
为了研究地震作用下桩-土相互作用响应情况,采用FLAC3D数值计算软件,建立欠固结土-桩体模型,分析地震作用下,不同时间段桩侧摩阻力、桩体轴力和土体应力变形情况.结果表明:由于地震波的往复运动,引起土体水平和竖直方向的位移也发生往复变化,易导致不同位置土体发生不均匀沉降和水平剪切运动,设计时需考虑地震作用效应所导致地基与基础的不均匀沉降和水平剪切作用.但桩侧摩阻力和中性点受到地震的影响较小,因此,对这两方面进行设计时,可减少地震因素的考虑.  相似文献   

4.
以某工程为依托,进行1∶20比例缩尺2×1桩基模型振动台试验,输入与当地地震设计反应谱接近的3种地震波,研究深厚饱和砂土场地条件下砂土-桩基-结构动力相互作用响应规律。试验再现液化宏观现象,研究表明:深厚饱和砂土场地对地震波高频部分过滤作用显著;随着地震动强度增大,场地液化程度提高,结构水平运动由高频向低频移动,频带范围变宽。同时,上部结构水平运动放大系数由4.56降低至2.75,但该效应对承台不明显;上部结构及承台在加载过程中相互影响,上部结构对承台的影响较大;砂层中部(距土体表面8D处)桩身弯矩相对于桩顶弯矩对输入地震波峰值加速度敏感度更高,随砂层液化程度增大而显著增大。  相似文献   

5.
采用高承台群桩-独柱墩结构体,进行可液化场地群桩-土-桥梁结构地震相互作用振动台试验,再现自然地震触发地基液化及桩基破坏等宏观现象;通过试验监测了液化场地中地基的加速度、孔压反应以及桩-柱墩的加速度、位移、应变反应和上部结构的加速度反应等。结果表明:输入地震波幅值和埋深是影响砂层孔压的重要因素;地震作用中,随着场地液化的发展,自下而上砂层加速度先逐渐减弱后逐渐放大;高承台桩基地震响应与土层土性、地震动大小、场地液化程度等密切相关,地震作用下场地液化容易诱发高承台群桩体系的倒塌。  相似文献   

6.
为了研究河床冲刷效应对自由场和桩基桥梁地震反应的影响,设计并完成冲刷条件下的桩基桥梁振动台试验。试验采用了层状剪切土箱,场地采用均一砂土土层来模拟,其相对密实度约为50%。桩基桥梁试件为2×2群桩基础单墩结构,墩顶固定4t的钢质量块来模拟桥梁上部结构,结构整体的一阶周期约为0.5s。试验共分为自由场、小冲刷深度试件和大冲刷深度试件3个工况,冲刷深度变化范围为0~8倍桩径。试验采用白噪声输入得到了场地和结构的特征周期,并通过Chi-Chi地震实测记录研究了场地土和结构的地震反应。结果分析阶段主要通过加速度计、位移计以及应变片的结果,分析了场地土和结构的动力特性、场地土的加速反应、结构的加速反应和曲率分布等。试验结果表明:冲刷条件下桩基桥梁的地震反应会受到结构和场地土2个因素的影响;场地土层会对基岩的地震动产生显著的放大效应;随着冲刷深度增大,桩基桥梁地震反应的最不利位置由桥墩向桩基础转移,且群桩基础的首次屈服位置会由桩身向桩顶转移。  相似文献   

7.
桩柱式高桥墩桩基稳定性分析   总被引:4,自引:1,他引:3  
基于桩柱式高桥墩桩基与一般桩基的差异,以及高桥墩桩基中桩、柱和土体共同工作的原理,建立了将桩和柱视为一个整体的分析计算模型。假设桩侧摩阻力随土层变化均匀分布,并假定桩侧土体地基反力系数随深度线性增加,由能量法得到了考虑高桥墩桩基中桩、柱材料和几何特性差异的桩土体系总势能,利用势能驻值原理导出相应的屈曲临界荷载和稳定计算长度。计算结果表明,通过改善土体性质,可提高桩柱式高桥墩桩基的稳定性能,但在柱桩刚度比较大,埋深较小时,其效果是有限的;高桥墩桩基的无量纲稳定计算长度随桩埋深的增加而增大;桩柱式高桥墩桩基可能存在一最优的柱桩刚度比,此时柱、桩、土三者共同作用体系最为协调。经与有限元数值分析结果比较发现,两者吻合很好。  相似文献   

8.
为研究一致激励条件下大跨度桥梁群桩基础的地震响应,以一座试设计斜拉桥(全长2 672m,主跨1 400m)为原型,设计了1/70的桩-土-桥梁结构全桥物理模型,基于该全桥模型开展群桩基础振动台试验研究。采用微粒混凝土和铁丝制作钢筋混凝土主塔和桥墩,C40混凝土和6mm螺纹钢制作桩基础和承台,质量比为3∶1的砂子和木屑模拟土体。模型包含8组群桩基础,分别支撑过渡墩、辅助墩和主塔。地震波采用人工波Acce100,自然地震波El Centro,Mexico City和Chi-Chi,以研究不同卓越频率地震波输入对大跨度桥梁群桩基础的影响。分析群桩基础的地震反应规律,包括不同桥墩处桩基础的桩身加速度、位移和弯矩。结果表明:因不同位置处群桩基础振动特性不同,相同地震动经各群桩基础传递至过渡墩、辅助墩和主塔底部,产生不同变化,导致不同桥墩或主塔处输入上部结构的激励不同;支撑辅助墩和主塔的群桩基础,桩顶加速度和相对位移随着输入地震波加速度峰值的增加而增加,但峰值加速度放大系数降低。4种地震波中Chi-Chi波引起的各群桩基础桩顶相对位移和桩顶弯矩响应最大;输入地震动为Mexico City波时,过渡墩处的群桩基础桩顶相对位移、加速度峰值放大系数大于辅助墩处群桩基础的相对位移和放大系数,输入地震动为其他3种地震波时,结果相反。  相似文献   

9.
通过地震危险性分析,得到了芜湖长江大桥桥址自由基岩面地震峰值加速度、反应谱、持时,进而采用人工模拟地震波技术,合成了基岩输入地震波。通过土层地震反应计算,得到芜湖长江大桥抗震设计参数。  相似文献   

10.
乐琪浪  叶赞  林承灏 《路基工程》2011,(3):159-161,165
建筑桩基技术规范公式得出的单桩竖向承载力在部分工程中与实际偏差较大。桩侧摩擦力公式中土层厚度li直接取单层土层的厚度,而未考虑土层的三相性,实际对桩提供有效摩擦阻力的只是土颗粒的作用,规范以整体提供摩擦阻力的计算法存在缺陷。基于土体三相性考虑,建立桩侧与土的物理力学模型计算单桩竖向承载力,分析得出计算式。通过工程试验与分析结果认为:桩侧有效摩擦厚度与土层的厚度以孔隙比建立其关系,桩侧摩阻力与土层孔隙比的大小成反比,计算结果与实际值吻合较好。  相似文献   

11.
为了研究场地地形对地下结构地震反应的影响,采用有限元数值分析方法,以地基土-地铁站结构体系为研究对象,分析场地地形下土-地下结构体系的地震反应。作为初步研究,主要对水平地震输入下含土坡的单一土层地形展开分析,研究体系的地震反应规律,并探求不同坡度下的土一地下结构体系地震反应变化规律。  相似文献   

12.
针对均质黏质粉土场地中上部荷载一定而设计了五桩一承台的布桩方式,采用强震记录的El-Centro-NS波前30 s地震动加速度时程作为地震动输入时程,进行了单向地震动输入的数值模拟,揭示了动力响应的特征及机理。数值模拟研究表明:墩顶、墩底、桩顶的加速度峰值分别是输入加速度峰值的2倍、0.8倍和0.76倍,表明上部结构的运动效应受结构惯性力影响更大;地表结构物的结构尺寸、荷载对地震响应具有显著的影响;承台与承台侧土体对加速度具有一定的削减作用。承台底面土体沉降先随着地震动小幅度波动,之后随着地震动幅值的增大,沉降迅速放大。五桩一承台布桩方式下,五根桩加速度峰值自桩端向上先增大,至埋深25 m附近开始减小,至埋深13 m附近峰值加速度减小到最小,再向上加速度峰值又迅速放大。  相似文献   

13.
以营口辽河公路大桥为背景,对斜拉桥的抗震性能进行研究.从斜拉桥的抗震分析方法和动力分析模型入手,研究斜拉桥的结构动力特性,用斜拉桥地震响应的反应谱法和时程积分法分析计算.动力特性分析结果表明初始索力和重力对结构的动力特性的计算结果影响很小.对于大跨度斜拉桥至少取前30个振型进行反应谱分析才合理.在3个方向的地震作用下,采用反应谱法计算,斜拉索的地震力较小,静内力加动内力均小于索的设计值,索始终保持弹性工作,且无松弛现象.以全飘体系顺桥向+竖向输入地震波进行时程分析,计算出塔根部支座反力、辅助墩及边墩支座反力、节点位移最值、拉索单元轴力最大值,并绘出顺桥向和竖向EL-centro地震波时间历程曲线图.  相似文献   

14.
周潇 《交通科技》2013,(5):13-16
采用单梁式有限元模型对望亨北盘江特大桥的动力特性和地震响应进行了计算,考虑了桩-土相互作用和群桩效应,采用反应谱法和时程分析法对该桥进行了地震反应的对比分析,在塔梁之间设置经过优化设计的阻尼器后对结构进行了计算。结果表明:桥梁结构的抗震性能满足要求;阻尼器的设置能有效降低漂浮体系大跨径斜拉桥地震作用下关键截面的位移响应,具有较高的使用价值。  相似文献   

15.
运用开源有限元软件OpenSEES,依据离心机动力模型试验的原型尺寸建立数值模型,采用动力非线性Winkler地基梁模型模拟桩-土相互作用,分析地震波幅值对斜坡桩基变形、内力和桩-土相对位移的影响。结果表明,地震波幅值由0.149 7g增大到0.210 6g、0.305 5g、0.430 3g和0.480 9g时,桩顶最终残余水平位移分别增大0.35、1.27、3.05和4.34倍,呈非线性增加;斜坡桩的最大弯矩出现在砂土和基岩交界面处;不同地震波幅值下,群桩中的P3桩最大弯矩与P4桩最大弯矩的比值分别为1.26、1.45、1.52、1.26和1.42;在一定深度范围内,桩-土相对位移随地震波幅值的增大而增加。  相似文献   

16.
芦杰 《交通科技》2012,(Z1):3-5
桩-土-结构动力相互作用使桥梁结构的动力特性、阻尼和地震反应发生改变,而忽略这种改变有时是偏危险的。因此,在进行桥梁的地震反应分析时,应考虑桩-土-结构的相互作用。文中借助Midas有限元分析软件,采用反应谱法对考虑桩-土作用与不考虑桩-土作用作了详细的地震反应计算分析,通过对两种计算结果的比较,分析了考虑桩-土作用与不考虑桩-土作用连续刚构的内力与位移。  相似文献   

17.
为了深入研究侧向受荷桩的承载特性及抵抗变形的能力,结合实际工程中天然土体的成层特性,开展了侧向受荷桩的室内模型试验,研究了不同粒径土层厚度及相对密实度对桩土相互动态耦合作用的影响,并结合PIV图像技术,分析了桩周土体位移场的发展趋势,为水平受荷桩的设计提供了理论依据。试验结果表明:①土体刚度与较小粒径土层的厚度呈正相关关系,而较大粒径砂土层厚的增加则对整个桩土体系的刚度产生了弱化作用;②当桩顶位移相同时,随着较小粒径砂土层厚的增大以及相对密实度的提高,土抗力随之增大,在深度为5~6倍桩径范围内达到最大值,且相对密实度对土抗力的影响更大;③水平受荷桩的桩前和桩后砂土表面均形成了一个纺锤形的位移影响区域,且此区域与水平加载方向的最大夹角随土层条件和相对密实度的变化很小,其值均为45°左右;④在相同的桩顶荷载下,砂土相对密实度的增大约束了桩体的运动趋势,使得桩体的水平位移减小,例如,当桩顶荷载均为30 N,密实度为0.5时桩前砂土的最大位移影响范围比密实度为0.3时普遍减少了约1倍桩径的距离;⑤桩身弯矩值随着较小粒径土层厚度的增大而增大,最大弯矩约出现在0.15 m深度(5倍桩径)处;随着砂土相对密实度的提高,桩身弯矩也逐渐增大,最大弯矩所在的位置逐渐上移。  相似文献   

18.
土与结构动力相互作用的有限元模拟分析   总被引:1,自引:1,他引:0  
针对某桥墩与地基土层相互作用,采用通用有限元程序ANSYS,进行了二维动力有限元数值模拟计算,计算中均匀地基土体的本构模型采用ANSYS程序里的Drucker-Prager模型,通过EI Centro地震波输入,对比分析了土-结构动力相互作用特性的影响因素.  相似文献   

19.
桩土共同作用对桥梁地震反应的影响很大,本文以某座单箱单室三跨波纹钢腹板组合结构桥梁为例,采用有限元软件Midas Civil建立了考虑桩土共同作用的波纹钢腹板组合结构桥梁有限元模型。为分析桩土共同作用对波纹钢腹板组合结构桥梁地震反应的影响规律,本文计算与对比了考虑与不考虑桩土共同作用下的结构动力响应,为未来类似桥梁的抗震设计提供参考。  相似文献   

20.
以济南市轨道交通R1线演马庄西站为工程背景,采用振动台试验研究土体自由场、两层两跨车站结构土体-结构体系在典型地震波下的动力特性。结果表明:在自由场试验中,随着输入地震波峰值的逐渐增大,相同位置的加速度放大系数逐渐减小;在土体-结构体系试验中,由于地下结构的存在,地震波在传播过程中放大效应与自由场存在差异,且不同类型的输入波产生不同的加速度放大系数变化规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号