首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
The North Aegean Sea constitutes an important region of the Mediterranean Sea since in its eastern part the mesotrophic, low salinity and relatively cold water from the Black Sea (outflowing from the Dardanelles strait) meets the oligotrophic, warm and very saline water of Levantine origin, thus forming a thermohaline front. Mesozooplankton samples were collected at discrete layers according to the hydrology of the upper 100 m, during May 1997 and September 1998. In May highest biomass and abundance values (up to 66.82 mg m− 3 and 14,157 ind m− 3) were detected in the 10–20 m layer (within the halocline) of the stations positioned close to the Dardanelles strait. The front moved slightly southwards in September, characterized by high biomass and abundance values within the halocline layer. The areas moderately or non influenced by Black Sea water revealed lower standing stock values than the frontal area in both cruises and maxima were detected in the uppermost low salinity layer. Samples collected at the stations and/or layers more influenced by Black Sea water were distinguished from those collected at layers and/or stations more affected by Levantine waters in both periods. In May the former samples were characterized by the copepods Acartia clausi, Centropages typicus, Paracalanus parvus. The abundance of the above species decreased gradually with increasing salinity, in the horizontal and/or in the vertical dimension, with a parallel increase of the copepods Oithona plumifera, Oithona copepodites, Oncaea media, Ctenocalanus vanus, Farranula rostrata. During September the frontal area as well as that covered by the modified Black Sea water, were highly dominated by the cladoceran Penilia avirostris and doliolids. For both seasons, MDS plots, issued from the combination of mesozooplankton and water-type data, revealed the gradual differentiation of zooplankton composition from the frontal area towards the area covered by Levantine water, following the spreading and mixing of the Black sea water. The observed temporal and spatial variability in the distribution pattern of mesozooplankton standing stock and species composition seems to depend considerably on the variability of circulation and frontal flows.  相似文献   

3.
Zooplankton communities were studied in southeastern Beaufort Sea (Arctic Ocean) in September–October 2002. Cluster analysis and non-metric multidimensional scaling revealed three distinct mesozooplankton assemblages. A neritic assemblage occurred on the Mackenzie Shelf and in Franklin Bay, while distinct off-shelf assemblages prevailed in the Cape Bathurst Polynya and on the Beaufort Slope respectively. Over 95% of the mesozooplankton was comprised of eight copepod taxa. Pseudocalanus spp. contributed predominantly to the discrimination of the three assemblages and was the only significant indicator of the Shelf assemblage. Oithona similis, Oncaea borealis, Metridia longa and Calanus hyperboreus were indicators of the Polynya assemblage. Cyclopina sp. and Microcalanus pygmaeus were indicative of the overall off-shelf community (Polynya and Slope assemblages). The importance of omnivores and carnivores increased from the shelf to the polynya and the slope. Station depth and duration of reduced ice conditions during summer (< 50% ice concentration) underpinned the distribution of the assemblages (r2 = 0.71 and 0.45 respectively). The abundance of Pseudocalanus spp. was independent of depth and increased with the duration of reduced ice conditions (rs = 0.438). The abundance of Cyclopina sp., M. pygmaeus and other indicators of the offshore assemblages followed the opposite trend (rs = − 0.467 and − 0.5 respectively). Under continued climate warming, a reduction of the ice cover will affect the biogeography of mesozooplankton on and around the Mackenzie Shelf, to the potential advantage of Pseudocalanus spp. and other calanoid herbivores.  相似文献   

4.
Net in situ production and export of dissolved organic carbon (DOC) and nitrogen (DON) have been studied in shelf waters off the Ría de Vigo (NW Spain), as part of a comprehensive hydrographic survey carried out from September 1994 to September 1995 with a fortnight periodicity. DOC and DON correlated well (r=+0.78), the slope of the regression line being 12.0±0.7 mol-C mol-N−1, about twice the Redfieldian slope of particulate organic matter, 6.5±0.2 mol-C mol-N−1 (r=+0.95). Labile DOC and DON accumulated in the upper 50 m during the upwelling season (March–September), mainly after prolonged periods of wind relaxation, when horizontal flows were reduced. This labile material represented 50% and 35% of the total (dissolved+particulate) organic carbon and nitrogen susceptible of microbial utilisation, which assert the key contribution of dissolved organic matter (DOM) to the export of new primary production in the NW Iberian upwelling system. This surface excess in shelf waters appeared to be formed into the highly productive Ría de Vigo (a large coastal indentation) at net rates of 4.4 μM-C d−1 and 1.3 μM-C d−1 in the inner and outer segments of the embayment respectively, and subsequently exported to the shelf. Once in the shelf, simple dilution with the inert DOM pool of recently upwelled Eastern North Atlantic Central Water (ENACW) occurred. Eventually, the DOM excess produced during the upwelling season is exported to the adjacent open ocean waters by the coastal circulation. Conversely, during the unproductive downwelling season (October–February), the lowest DOC and DON levels were recorded and export was prevented by the characteristic downwelling front associated to the seasonal poleward slope current.  相似文献   

5.
Seasonal changes in the abundance and biomass of cyanobacteria (Synechococcus and Prochlorococcus) and picoeukaryotes were studied by flow cytometry in the upper layers of the central Cantabrian Sea continental shelf, from April 2002 to April 2006. The study area displayed the typical hydrographic conditions of temperate coastal zones. A marked seasonality of the relative contribution of prokaryotes and eukaryotes was found. While cyanobacteria were generally more abundant for most of the year (up to 2.4 105 cells mL− 1), picoeukaryotes dominated the community (up to 104 cells mL− 1) from February to May. The disappearance of Prochlorococcus from spring through summer is likely related to shifts in the prevailing current regime. The maximum total abundance of picophytoplankton was consistently found in late summer–early autumn. Mean photic-layer picoplanktonic chlorophyll a ranged from 0.06 to 0.53 µg L− 1 with a relatively high mean contribution to total values (33 ± 2% SE), showing maxima around autumn and minima in spring. Biomass (range 0.58–40.16 mg C m− 3) was generally dominated by picoeukaryotes (mean ± SE, 4.28 ± 0.27 mg C m− 3) with an average contribution of cyanobacteria of 30 ± 2%. Different seasonality of pigment and biomass values resulted in a clear temporal pattern of picophytoplanktonic carbon to chlorophyll a ratio, which ranged from 10 (winter) to 140 (summer). This study highlights the important contribution of picoplanktonic chlorophyll a and carbon biomass in this coastal ecosystem.  相似文献   

6.
Methane release and coastal environment in the East Siberian Arctic shelf   总被引:1,自引:0,他引:1  
In this paper we present 2 years of data obtained during the late summer period (September 2003 and September 2004) for the East Siberian Arctic shelf (ESAS). According to our data, the surface layer of shelf water was supersaturated up to 2500% relative to the present average atmospheric methane content of 1.85 ppm, pointing to the rivers as a strong source of dissolved methane which comes from watersheds which are underlain with permafrost. Anomalously high concentrations (up to 154 nM or 4400% supersaturation) of dissolved methane in the bottom layer of shelf water at a few sites suggest that the bottom layer is somehow affected by near-bottom sources. The net flux of methane from this area of the East Siberian Arctic shelf can reach up to 13.7 × 104 g CH4 km− 2 from plume areas during the period of ice free water, and thus is in the upper range of the estimated global marine methane release. Ongoing environmental change might affect the methane marine cycle since significant changes in the thermal regime of bottom sediments within a few sites were registered. Correlation between calculated methane storage within the water column and both integrated salinity values (r = 0.61) and integrated values of dissolved inorganic carbon (DIC) (r = 0.62) suggest that higher concentrations of dissolved methane were mostly derived from the marine environment, likely due to in-situ production or release from decaying submarine gas hydrates deposits. The calculated late summer potential methane emissions tend to vary from year to year, reflecting most likely the effect of changing hydrological and meteorological conditions (temperature, wind) on the ESAS rather than riverine export of dissolved methane. We point out additional sources of methane in this region such as submarine taliks, ice complex retreat, submarine permafrost itself and decaying gas hydrates deposits.  相似文献   

7.
We examined the influence of the Mackenzie River plume on sinking fluxes of particulate organic and inorganic material on the Mackenzie Shelf, Canadian Arctic. Short-term particle interceptor traps were deployed under the halocline at 3 stations across the shelf during fall 2002 and at 3 stations along the shelf edge during summer 2004. During the two sampling periods, the horizontal patterns in sinking fluxes of particulate organic carbon (POC) and chlorophyll a (chl a) paralleled those in chl a biomass within the plume. Highest sinking fluxes of particulate organic material occurred at stations strongly influenced by the river plume (maximum POC sinking fluxes at 25 m of 98 mg C m− 2 d− 1 and 197 mg C m− 2 d− 1 in 2002 and 2004, respectively). The biogeochemical composition of the sinking material varied seasonally with phytoplankton and fecal pellets contributing considerably to the sinking flux in summer, while amorphous detritus dominated in the fall. Also, the sinking phytoplankton assemblage showed a seasonal succession from a dominance of diatoms in summer to flagellates and dinoflagellates in the fall. The presence of the freshwater diatom Eunotia sp. in the sinking assemblage directly underneath the river plume indicates the contribution of a phytoplankton community carried by the plume to the sinking export of organic material. Yet, increasing chl a and BioSi sinking fluxes with depth indicated an export of phytoplankton from the water column below the river plume during summer and fall. Grazing activity, mostly by copepods, and to a lesser extent by appendicularians, appeared to occur in a well-defined stratum underneath the river plume, particularly during summer. These results show that the Mackenzie River influences the magnitude and composition of the sinking material on the shelf in summer and fall, but does not constitute the only source of material sinking to depth at stations influenced by the river plume.  相似文献   

8.
The water mass, circulation and chemical properties of the Cilician Basin, the northeastern Levantine Sea, are described on the basis of three hydrographic cruises performed during May 1997 (spring), July 1998 (summer) and October 2003 (autumn). The hydrographic data reveal the presence of Levantine Surface Water (LSW) and Modified Atlantic Water (MAW) within the upper 90 m layer, Levantine Intermediate Water (LIW) between 90 and 250 m, and Transitional Mediterranean Water (TMW) further below. The temporal variability of the circulation system is manifested by a change in shape, size and intensity of eddies as well as the pathways of the Lattakia Basin coastal current system. The nutrient concentrations varied between nitrate + nitrite = 0.16–0.31 μM, phosphate = 0.02–0.03 μM and silicate = 0.95–1.2 μM for the surface layer during sampling periods. Dissolved nutrient concentrations in the Transitional Mediterranean Water were: 2.1–5.3 μM for NO3 + NO2, 0.10–0.21 μM for PO4 and 5.7–10 μM for Si. The molar ratios of nitrate to phosphate in the water column range between 5 and 20 in the surface layer and reach up to a value of 45 at the top of the nutricline at the depths of 29.05 kg/m3 isopycnal surface for most of the year. Below the nutricline the N / P ratios retain the values around 24–28.  相似文献   

9.
We use hydrographic, current, and microstructure measurements, and tide-forced ocean models, to estimate benthic and interfacial mixing impacting the evolution of a bottom-trapped outflow of dense shelf water from the Drygalski Trough in the northwestern Ross Sea. During summer 2003 an energetic outflow was observed from the outer shelf ( 500 m isobath) to the  1600 m isobath on the continental slope. Outflow thickness was as great as  200 m, and mean speeds were  0.6 m s− 1 relative to background currents exceeding  1 m s− 1 that were primarily tidal in origin. No outflow was detected on the slope in winter 2004, although a thin layer of dense shelf water was present on the outer shelf. When the outflow was well-developed, the estimated benthic stress was of order one Pascal and the bulk Froude number over the upper slope exceeded one. Diapycnal scalar diffusivity (Kz) values in the transition region at the top of the outflow, estimated from Thorpe-scale analysis of potential density and measurements of microscale temperature gradient from sensors attached to the CTD rosette, were of order 10− 3−10− 2 m2 s− 1. For two cases where the upper outflow boundary was particularly sharply defined, entrainment rate we was estimated from Kz and bulk outflow parameters to be  10− 3 m s− 1 ( 100 m day− 1). A tide-forced, three-dimensional primitive equation ocean model with Mellor-Yamada level 2.5 turbulence closure scheme for diapycnal mixing yields results consistent with a significant tidal role in mixing associated with benthic stress and shear within the stratified ocean interior.  相似文献   

10.
11.
Phytoplankton community structure was investigated in a 1-year study period from January to December 2006 in the Tunis North Lagoon (South Mediterranean). Twice a month, sampling was carried out from the whole water column. Phytoplankton species composition showed seasonal dynamics following the general environmental variable trends in the study area, with variation in species abundance levels within each season characterised by the presence of different phytoplankton communities. Analysis of environmental variables indicated that phytoplankton-dominant communities were associated with various water physicochemical characteristics, especially water temperature and salinity. Accordingly, significant correlation was recorded between water temperature and dinoflagellates (r = 0.35; p < 0.05) in summer and diatoms (r = 0.69; p < 0.05) in autumn, whereas euglenophytes, cyanophytes and chlorophytes were slightly correlated with temperature in autumn. Salinity was positively correlated with dichtyophytes (r = 0.41; p < 0.05) in winter and with diatoms (r = 0.65; p < 0.05) and euglenophytes (r = 0.57; p < 0.05) in autumn. On the other hand, relationships between high nitrogen nutrient concentration and phytoplankton concentration were recorded for diatoms (r = 0.43; p < 0.05 with NO2; r = 0.49; p < 0.05 with NO3) in winter. Silicate concentration supported proliferation of diatoms (r = 0.58; p < 0.05) in autumn in our study period. In contrast, increase of dinoflagellate concentration was associated with the decrease of these parameters in spring and summer.  相似文献   

12.
As part of the Canadian Arctic Shelf Exchange Study (CASES), we investigated the spatial and seasonal distributions of viruses in relation to biotic (bacteria, chlorophyll-a (chl a)) and abiotic variables (temperature, salinity and depth). Sampling occurred in the southern Beaufort Sea Shelf in the region of the Amundsen Gulf and Mackenzie Shelf, between November 2003 and August 2004. Bacterial and viral abundances estimated by epifluorescence microscopy (EFM) and flow cytometry (FC) were highly correlated (r2 = 0.89 and r2 = 0.87, respectively), although estimates by EFM were slightly higher (FC = 1.08 × EFM + 0.12 and FC = 1.07 × EFM + 0.43, respectively). Viral abundances ranged from 0.13 × 106 to 23 × 106 ml− 1, and in surface waters were ~ 2-fold higher during the spring bloom in May and June and ~ 1.5-fold higher during July and August, relative to winter abundances. These increases were coincident with a ~ 6-fold increase in chl a during spring and a ~ 4-fold increase in bacteria during summer. Surface viral abundances near the Mackenzie River were ~ 2-fold higher than in the Mackenzie Shelf and Amundsen Gulf regions during the peak summer discharge, concomitant with a ~ 5.5-fold increase in chl a (up to 2.4 μg l− 1) and a ~ 2-fold increase in bacterial abundance (up to 22 × 105 ml− 1). Using FC, two subgroups of viruses and heterotrophic bacteria were defined. A low SYBR-green fluorescence virus subgroup (V2) representing ~ 71% of the total viral abundance, was linked to the abundance of high nucleic acid fluorescence (HNA) bacteria (a proxy for bacterial activity), which represented 42 to 72% of the bacteria in surface layers. A high SYBR-green fluorescence viral subgroup (V1) was more related to high chl a concentrations that occurred in surface waters during spring and at stations near the Mackenzie River plume during the summer discharge. These results suggest that V1 infect phytoplankton, while most V2 are bacteriophages. On the Beaufort Sea shelf, viral abundance displayed seasonal and spatial variations in conjunction with chl a concentration, bacterial abundance and composition, temperature, salinity and depth. The highly dynamic nature of viral abundance and its correlation with increases in chl a concentration and bacterial abundance implies that viruses are important agents of microbial mortality in Arctic shelf waters.  相似文献   

13.
The key features of the western Galician shelf hydrography and dynamics are analyzed on a solid statistical and experimental basis. The results allowed us to gather together information dispersed in previous oceanographic works of the region. Empirical orthogonal functions analysis and a canonical correlation analysis were applied to a high-resolution dataset collected from 47 surveys done on a weekly frequency from May 2001 to May 2002. The main results of these analyses are summarized bellow. Salinity, temperature and the meridional component of the residual current are correlated with the relevant local forcings (the meridional coastal wind component and the continental run-off) and with a remote forcing (the meridional temperature gradient at latitude 37°N). About 80% of the salinity and temperature total variability over the shelf, and 37% of the residual meridional current total variability are explained by two EOFs for each variable. Up to 22% of the temperature total variability and 14% of the residual meridional current total variability is devoted to the set up of cross-shore gradients of the thermohaline properties caused by the wind-induced Ekman transport. Up to 11% and 10%, respectively, is related to the variability of the meridional temperature gradient at the Western Iberian Winter Front. About 30% of the temperature total variability can be explained by the development and erosion of the seasonal thermocline and by the seasonal variability of the thermohaline properties of the central waters. This thermocline presented unexpected low salinity values due to the trapping during spring and summer of the high continental inputs from the River Miño recorded in 2001. The low salinity plumes can be traced on the Galician shelf during almost all the annual cycle; they tend to be extended throughout the entire water column under downwelling conditions and concentrate in the surface layer when upwelling favourable winds blow. Our evidences point to the meridional temperature gradient acting as an important controlling factor of the central waters thermohaline properties and in the development and decay of the Iberian Poleward Current.  相似文献   

14.
15.
The results on the distribution of phytoplankton biomass (expressed as Chla) and primary production (14C assimilation), during three oceanographic cruises carried out during Austral spring and at the end of the summer and the autumn in the Straits of Magellan, suggest a strong variability of trophic levels for this ecosystem.Seasonal evolution of the biomass concentration goes from the spring maximum of 2.33 μg/l through a sharp decrease, 0.49 μg/l, observed at the end of summer, until the minimum of 0.24 μg/l measured during the autumn.The trophic conditions are dependent on hydrographic, meteo-climatic and geo-morphological characteristics: at the Atlantic entrance and between the two Angosturas the strong mixing of water column limit the development of phytoplankton; at the Western opening and along the Pacific arm the complex exchange mechanisms with the ocean, the glacio-fluvial contribution and the presence of a thermohaline front near the Isla Carlos III influence both biomass and primary production distributions. The maximum values are reached in the Central Zone (Paso Ancho) characterized by high stability of the water column.Primary production ranged from a minimum of 12.3 to a maximum of 125.9 mgC m−2 h−1. The overall trend seems to be a progressive and simultaneous increase from the Pacific and Atlantic openings to the Central Zone of Paso Ancho where the maximum value was reached. In general, biomass and primary production distributions correspond quite well except for the area of Isla Carlos III where biological and chemico-physical causes tend to limit 14C assimilation.Contribution of pico-phytoplankton (< 2 μm) to total biomass appears to be time dependent: in the blooms observed during spring a very modest incidence (< 6%) was observed whereas became more (> 50%) during the summer-autumn seasons when total biomass was decreasing.Within the Straits, at the end of summer, the contribution of pico-phytoplankton primary production is 59%, whereas nano and microplankton contribute 39% and 2%, respectively. At the oceanic external stations the photosynthetic activity of the bigger size-fraction (> 2 μm) is predominant (> 50%).These findings support the hypothesis that the pico-phytoplankton ( < 2 μm) is substantially constant, whereas temporal variations are due to the larger (> 10 μm) cells only.  相似文献   

16.
《Journal of Marine Systems》2006,59(1-2):97-110
The South China Sea (SCS) is the largest marginal sea in the world. Previous studies, including recent intensive paleo-oceanographic studies, suggest that the SCS is sensitive to many types of physical forcing on the short-term (e.g., internal waves and tides, mesoscale eddies, typhoons, etc.), annual (e.g., monsoon), inter-annual (e.g., El Niño), and very long-term (e.g., climate change) time scales. To better understand how various types of physical forcing influence biogeochemical cycles in the water column, a time-series study was initiated. Bimonthly hydrographic surveys occupied stations in the subtropical–tropic SCS at 19°N, 118.5°E. Results suggest that the Southeast Asian monsoons, northeasterly from October to April and southwesterly from May to September, have important effects on biogeochemical cycles in the upper water column. Hydrographic data showed that the mixed layer depth was much shallower in winter than in other seasons. During the winter monsoon period, the nitricline became shallower and upwelling sustained an elevated phytoplankton standing stock. Mean chlorophyll concentrations (0.65 mg Chl m 3) in winter were 8 times higher than in summer, and the integrated primary productivity over the euphotic zone reached as high as ca. 684 mg C m 2 day 1 in winter. The upwelling is produced by convergence of currents in the cyclonic gyre near the Luzon Strait, where the Kuroshio intrudes. In summer the current reverses following the wind change. The nitricline is depressed as downwelling occurs off northwest Luzon, resulting in strong nutrient limitation and very low chlorophyll concentrations.  相似文献   

17.
Two hydrobiological transects across the East Greenland Shelf and the open waters of Fram Strait in summer were chosen to illustrate the distribution and production of phyto- and zooplankton in relation to water masses and ice cover. The parameters used were temperature and salinity, inorganic nutrients, chlorophyll a, primary production, phytoplankton species composition, abundance of the dominant herbivorous copepods Calanus finmarchicus, C. glacialis, C. hyperboreus, Metridia longa and egg production of C. finmarchicus and C. glacialis. Grazing impact of copepodites and adults of these four species was modelled for each station by using egg production rates as an index of growth. Seasonal development of plankton communities was closely associated with the extent of the ice cover, hydrographic conditions and the water masses typical of the different hydrographic domains. Four regions were identified from their biological activities and physical environment: The Northeast Water polynya on the East Greenland Shelf, with a springbloom of diatoms and active reproduction of herbivorous copepods. The pack ice region, dominated by small flagellates and negligible grazing activities. The marginal ice zone, with high variability and strong gradients of autotroph production related to eddies and ice tongues, an active microbial loop and low egg production. The open water, with high station-to-station variability of most of the parameters, probably related to hydrographic mesoscale activities. Here, Phaeocystis pouchetii was a prominent species in the phytoplankton communities. Its presence may at least partly be responsible for the generally low egg production in the open waters. Grazing impact on primary production was always small, due to low zooplankton biomass in the polynya and due to low ingestion in the remaining regions.  相似文献   

18.
During a hydrographic survey in January 2006 the spreading of inflowing saline water was observed in the Arkona Basin (Western Baltic Sea). Two bottom mounted ‘pulse coherent’ acoustic Doppler profilers (PC-ADP) were used to measure the near-bottom current field of the dense plume with a high temporal (1 s) and spatial resolution (5 cm). In order to estimate the dissipation rate of turbulent kinetic energy () a structure function approach was applied to the beam velocity data. Simultaneous measurements with a microstructure shear profiler (MSS) and an acoustic Doppler velocimeter (ADV) supplied independent data for the verification of the structure function method. Additional measurements with standard CTD, near-bottom towed and vessel mounted acoustic Doppler current profilers (ADCP) completed the data set.The estimated dissipation rates from the structure function approach fit well with the values derived from the ADV and the MSS probe. It is shown that the structure function approach is a reliable and easily applicable method to derive estimates of TKE dissipation rates from PC-ADP beam velocities. The observed dissipation rates ranged between 5 · 10− 6 and 1 · 10− 8 W kg− 1 depending on the hydrographic conditions. Inside the plume the dissipation rates exceeded that of the overlaying brackish water by two orders of magnitude. Since the noise level of velocity data in pulse coherent mode is considerably lower than in the Doppler mode the PC-ADP can also be used for estimates in marine environments with low turbulence level. Reynolds stresses estimated from the PC-ADP and the ADV agreed well at the same depth level. TKE production derived from PC-ADP measurements compared reasonably well with the dissipation rate of TKE in a varying environment.  相似文献   

19.
Numerical artifacts can limit accurate simulation of turbulent particle motion when Lagrangian particle-tracking models are implemented in hydrodynamic models with stratified conditions like fronts. Yet, modeling of individual particle motion in frontal regions is critical for understanding sediment dynamics as well as the transport and retention of planktonic organisms. The objective of this research was to develop a numerical technique to accurately simulate turbulent particle motions in a particle-tracking model embedded within a hydrodynamic model of a frontal zone. A new interpolation scheme, the ‘water column profile’ scheme, was developed and used to implement a random displacement model for turbulent particle motions. A new interpolation scheme was necessary because linear interpolation schemes caused artificial aggregation of particles where abrupt changes in vertical diffusivity occurred. The new ‘water column profile’ scheme was used to fit a continuous function (a tension spline) to a smoothed profile of vertical diffusivities at the xy particle location. The new implementation scheme was checked for artifacts and compared with a standard random walk model using (1) Well Mixed Condition tests, and (2) dye-release experiments. The Well Mixed Condition tests confirmed that the use of the ‘water column profile’ interpolation scheme for implementing the random displacement model significantly reduced numerical artifacts. In dye-release experiments, high concentrations of Eulerian tracer and Lagrangian particles were released at the same location up-estuary of the salt front and tracked for 4 days. After small differences in initial dispersal rates, tracer and particle distributions remained highly correlated (r = 0.84 to 0.99) when a random displacement model was implemented in the particle-tracking model. In contrast, correlation coefficients were substantially lower (r = 0.07 to 0.58) when a random walk model was implemented. In general, model performance tests indicated that the ‘water column interpolation’ scheme was an effective technique for implementing a random displacement model within a hydrodynamic model, and both could be used to accurately simulate diffusion in a highly baroclinic frontal region. The new implementation scheme has the potential to be a useful tool for investigating the influence of hydrodynamic variability on the transport of sediment particles and planktonic organisms in frontal zones.  相似文献   

20.
The water column above the Prestige wreckage was sampled during two consecutive campaigns: Prestinaut (December 2002) two weeks after the tanker sunk and HidroPrestige0303 (March 2003) one month after the sealing of the main fuel leaks. Samples of the original cargo fuel and the emulsified fuel in the surface of the ocean were also collected. Analysis of the fuel indicated the release of 135 kg of Cu, 1700 kg of Ni and 5300 kg of V from the original fuel to the water column, remaining 35 kg of Cu, 3100 kg of Ni and 13,800 kg of V in the emulsified fuel. The metal partitioning between the water column and the emulsioned floating fuel, Cu > Ni ~ V, are in accordance with the stability index for the metal–nitrogen bond in metalloporphyrins. This release had an impact on dissolved trace metal concentrations in the water column. An increase on dissolved copper (2.8–4.7 nM) and nickel (2.2–8.0 nM) with respect to natural values (1–3 nM for Cu and 1.6–5 nM for Ni) was observed. Values for vanadium (28–35 nM) were in the range of pristine North Atlantic waters (30–36 nM). This contamination was especially observed in the upper water column (0–50 m), associated with the mixing of seawater with the fuel moving upwards, and in deep waters, where the residence time of fuel is higher. Future research in this field should focus on the environmental variables and the processes that control the release of contaminants from fuels for a better assessment of the contamination in oil-spill events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号