首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了研究降雨条件下包盖法填筑炭质泥岩路堤稳定性,该文基于饱和-非饱和状态路堤渗流数学模型与稳定性计算理论,采用有限元数值方法对降雨条件下包盖法填筑炭质泥岩路堤渗流特征及稳定性进行了计算。得到如下结论:(1)降雨条件下,坡面附近包边土体积含水率升降的幅度与高程成正比,与距坡面的距离成反比;(2)降雨过程中,黏土包边方案路堤内部土体体积含水率、孔隙水压力的变化幅度最小,粉质黏土包边方案次之,粉土包边方案最大;(3)降雨条件下,路堤内部土体体积含水率、孔隙水压力的变化幅度与包边土体宽度成反比;(4)降雨期间,黏土包边方案路堤安全系数最大,粉质黏土包边方案次之,粉土包边方案最小;(5)降雨开始后,路堤安全系数不断降低,降雨停止后,路堤安全系数缓慢升高,路堤安全系数与包边宽度成正比。  相似文献   

2.
为了研究包盖法填筑炭质泥岩路堤在降雨条件下的稳定性,基于饱和-非饱和渗流数学模型与边坡稳定性计算理论,对不同降雨强度和饱和渗透系数影响下炭质泥岩路堤渗流特性及稳定性的变化规律进行了分析。得出如下结论:(1)降雨过程中,坡面附近土体体积含水率升高速度快,其升高幅度和高程、距坡面的距离成反比。降雨停止后,坡面附近土体体积含水率降低缓慢,其降低幅度和高程、距坡面距离成正比。(2)随着降雨时间的增加,降雨强度越大,路堤土体孔隙水压力升高越明显,包边土体中正孔隙水压力区域范围也越大。(3)在降雨过程中,路堤饱和渗透系数越大,路堤土体孔隙水压力升高幅度越小。包边土体中正孔隙水压力区域范围也越小。(4)降雨期间,路堤安全系数逐渐降低;降雨停止之后,路堤安全系数缓慢升高。路堤安全系数的大小和降雨强度、饱和渗透系数成反比。  相似文献   

3.
为了研究风化程度与非饱和效应对残积土边坡渗流特征及稳定性的影响,该文基于非饱和土抗剪强度数学表达式及考虑时间与深度效应的土体渗流和强度指标数学模型,提出了一种能同时考虑风化与非饱和效应的边坡稳定性极限平衡分析方法,并结合饱和-非饱和渗流计算理论对残积土边坡渗流特征及稳定性进行了分析。得出如下结论:(1)降雨过程中,坡面附近土体体积含水率逐渐升高,其升高幅度、升高速率与降雨强度成正比,进入暂态饱和区的时间与降雨强度成反比;(2)降雨期间,坡面附近土体体积含水率升高幅度、升高速率及进入暂态饱和区的时间受风化程度的影响较小;(3)降雨条件下,边坡暂态饱和区空间分布面积及深度与降雨强度、风化程度及降雨时间成正比,出现暂态饱和区的时间与降雨强度成反比;(4)降雨期间,边坡安全系数下降幅度与降雨强度、风化程度及降雨时间成正比。  相似文献   

4.
为研究坡前水位升降对炭质泥岩-粉土分层填筑路堤边坡渗流特征及稳定性的影响,结合饱和-非饱和渗流理论与非饱和抗剪强度理论对分层填筑路堤在不同水位升降速度下的渗流特征与边坡稳定性进行数值分析,并探讨了分层交错填筑厚度对路堤稳定性的影响。分析表明:1坡前水位上升引起路堤土体积含水率与孔隙水压力升高,坡前水位下降后,路堤顶部土体体积含水率与孔隙水压力继续升高,其余位置则逐渐降低,且坡面附近的降低幅度要大于路堤内部;2特征截面沿高程方向上的含水率分布具有明显的分层差异性;3坡前水位升降过程中,路堤边坡安全系数呈现先增大、后减小、再增大的变化规律;4炭质泥岩-粉土分层填筑路堤的最佳分层交错填筑厚度为炭质泥岩与粉质粘土填筑层厚度均为1.5m。  相似文献   

5.
为了研究水位升降期间炭质泥岩路堤稳定性,在探讨路堤稳定性影响因素的基础上,结合渗流及稳定性分析基本理论,提出了一种能同时考虑坡前水位压力、孔隙水压力、孔隙水重力、渗透力、软化、非饱和强度的路堤稳定性分析方法,并基于该方法对水位升降过程中炭质泥岩路堤渗流特性及稳定性进行了计算。研究结果表明:提出的路堤稳定性评价方法具有较强的适用性和针对性,能够综合评价多因素影响下炭质泥岩路堤稳定性;水位上升期及高水位恒定期,路堤内部地下水位、孔隙水压力、饱和度均逐渐升高,孔隙水压力升高幅度与高程成反比,饱和度升高幅度与高程成正比,水平向内、竖直向下的渗透力及其峰值、水平向内的位移均先增大,后减小,竖直向上的位移不断增大;水位下降期及低水位恒定期,路堤内部地下水位、孔隙水压力、饱和度均逐渐降低,孔隙水压力降低幅度与高程成反比,饱和度降低幅度与高程成正比,水平向外的渗透力及其峰值、水平向外与竖直向下的位移、塑性应变区面积均先增大、后减小,竖直向下的渗透力呈""形分布。研究成果对库、河岸地区炭质泥岩路堤的修筑及稳定性的控制具有一定的参考意义。  相似文献   

6.
储水或泄水的过程使水库内水位不断发生升降变化,并带动沿岸边坡内的地下水位产生升降变化,从而导致沿岸边坡坡体内部渗流水压力与原岩应力随水位升降发生改变。这种改变很可能促使库岸边坡中原本存在的已稳定滑坡体再次发生滑坡,或在部分地质条件较差的地区形成新的土体或岩体滑坡,影响库岸边坡的稳定。为此,通过建立库水下降时库岸边坡数值分析模型,从饱和渗透率对浸润线及库岸边坡安全系数的影响两方面,分析研究了饱和渗透率对库岸边坡稳定性的影响。研究结果表明:边坡浸润线位置受饱和渗透率的影响较大。随着饱和渗透率的不断增大,浸润线位置的变化幅度随水位的变化越来越大,且当水位下降时,浸润线均先在自由坡面处降低,然后再向离坡面较远处的位置逐渐推进降低。同时,边坡的安全系数亦受饱和渗透率的影响,边坡的安全系数在饱和渗透率较大时,随着水位不断下降表现出先减小后增大的变化趋势。而当渗透系数较小时,安全系数随着水位的不断下降呈现出不断减小的趋势,故饱和渗透率将通过影响浸润线位置及库岸边坡安全系数来影响库岸边坡的稳定性。  相似文献   

7.
为了研究水位升降对沿湖路基边坡渗流场及稳定性的影响,基于饱和-非饱和渗流与非饱和抗剪强度理论对算例路基边坡在设计水位升降方案条件下的孔隙水压力、体积含水率、浸润线变化规律进行了分析,并在此基础上研究水位升降对其稳定性的影响。研究表明:对水位升降条件下路基边坡渗流场进行正确分析是进行稳定性研究的先决条件;水位上升将引起路基坡面深度一定范围内的孔隙水压力增大,在入渗影响范围内,基质吸力逐渐降低甚至消失。水位下降后,由于水体的渗出,湖水位面以上的路基土体孔隙水压力降低,路基含水率与孔隙水压力具有相似的变化特征;路基浸润线在水位升降过程中变化明显;水位升降过程引起的路基边坡安全系数的变化表现为迅速增大、缓慢降低、加速减小、缓慢增大4个阶段。  相似文献   

8.
丽香高速公路岸坡内渗流是稳定性控制主要影响因素,因而确定渗流场影响范围,即浸润线位置尤为重要。基于浸润线出渗点滞后高度现象,提出滞后高度取值假定,推导得到浸润线计算公式;建立理想岸坡渗流模型,分析渗透系数及水位下降速度对岸坡稳定性的影响规律。研究结果表明:(1)考虑滞后高度得到的浸润线计算公式对比文献资料误差在2m范围内,使浸润线计算精确的提高。(2)水位下降快,渗透系数小的坡体稳定系数越小;反之,稳定系数增大;渗透系数增大到一定程度,岸坡内外水位变化保持大体一致,对岸坡稳定性影响小。  相似文献   

9.
水位下降对边(滑)坡稳定性的影响   总被引:1,自引:0,他引:1  
通过PLAXIS有限元程序对一边坡算例进行分析,根据实际工程的需要选择理想弹塑性模型和莫尔-库仑屈服准则进行数值模拟,并对比分析了土体分别设置为排水条件和不排水条件时的情况。计算结果表明,当土体设置为排水条件时,在库水水位下降过程中,安全系数随水位的下降逐渐减小,但当水位下降了20 m以后,由于孔隙水压力给滑面提供了竖直方向的作用力,随着水位的继续下降安全系数反而略有上升。当土体设置为不排水条件时,坡体内产生的超孔隙水压力对边坡安全系数的降低更为明显。考虑坡体内超孔隙水压力时安全系数的计算结果比不考虑坡体内超孔隙水压力时的计算结果低10%左右,因此实际工程中应该充分考虑超孔隙水压力的积累和消散,并根据"最不利水位"所对应的安全系数进行校核。在计算过程中PLAXIS程序能较好地模拟水位下降引起的渗流作用对边(滑)坡稳定性的影响。  相似文献   

10.
为研究浸水条件下炭质泥岩-土分层填筑路堤的含水特征与变形规律,开展模拟路堤边坡外水位升高的室内模型试验。分别采用含水率测试仪与陶瓷张力计测定坡体不同位置的含水率及孔隙水压力;采用土压力盒测定坡体前端不同深度处推力;采用千分表测定坡顶的竖直及水平位移。研究结果表明:浸水条件下路堤内各测点的含水率变化可描述为基本不变、快速升高、基本稳定3个阶段,响应时间与到坡面的水平距离成正比;孔隙水压力变化规律表现为含水率增大的同时,孔隙水压力也在增大,当含水率达到饱和含水率时,孔隙水压力也将大于或等于0kPa;坡前推力在浸水初期略微减小,浸水后期明显增大,坡体表层附近坡前推力大于坡体底部土层;路堤在水平方向的位移表现为先向坡内方向发展,后向坡外方向不断增大,竖直方向的变形表现为向下不断增大;坡外水体在渗入路堤的过程中遵循由外向内与由下往上相结合的顺序,浸润线在炭质泥岩中的移动速率大于粉质黏土中的移动速率。  相似文献   

11.
《公路》2018,(11)
为研究降雨条件下崩解炭质泥岩一维渗流特性,设计了一种测量崩解炭质泥岩在降雨条件下体积含水率变化规律的装置,通过设置3种降雨强度下崩解炭质泥岩土体的入渗试验,得到崩解炭质泥岩在不同降雨条件下随高程分布的各特征点体积含水率随时间的变化规律。同时,基于Geo-Studio软件中Seep模块对崩解炭质泥岩一维土柱进行数值模拟,验证了崩解炭质泥岩的渗流规律。结果表明:(1)崩解炭质泥岩路堤在降雨条件下沿高度方向的体积含水率变化呈现梯度变化规律,首先含水率由上至下依次升高达到平稳,随后底部土体率先饱和,最后全部土体达到饱和;(2)各特征点含水率达到平稳状态和饱和状态的时间与降雨强度成反比;(3)降雨过程中浸润线高度不断降低,浸润线的下降速度和拟合函数斜率均与降雨强度成正比,降雨强度越大浸润线到达碎石层的时间越短;(4)数值计算所得特征点含水率和浸润线的变化规律与试验结果基本一致,含水率变化更具规律性且浸润线深度在降雨中后期的结果较大。  相似文献   

12.
为丰富浸水路基边坡稳定性分析方法,针对任意形状的滑裂面,视滑体为一个刚体,不划分条块,分别计算浸润线上下的弹性压缩势能与剪切势能,并考虑动水压力对系统势能的影响,得到滑体系统的总势能;然后基于最小势能原理求得滑体虚位移,通过力与位移的关系求出滑裂面上的法向力和极限抗滑力,计算浸水路基边坡潜在滑动方向上抗滑力与下滑力的代数和之比得到安全系数,提出了动水压力作用下的浸水路基边坡最小势能稳定性分析方法,并开发了相应的浸水路基边坡稳定性分析程序。通过算例对比验证及参数影响分析,结果表明:路基边坡在浸水以后,安全系数减小,稳定性降低;在考虑滑裂面处的剪切势能以及动水压力的作用后,最小势能法的计算结果与极限平衡法的计算结果相差在5%以内,并且随着土体的黏聚力或内摩擦角变化,其安全系数的变化趋势与极限平衡法及工程实际相吻合;在临坡水位下降的过程中,路基边坡的安全系数先减小,并在临坡水位下降到1/2坡高附近时达到最小值,之后又有一定的增大。该方法无需划分条块,计算过程简单,不需要迭代,便于工程应用,对完善浸水路基稳定性分析理论及其应用具有重要的意义。  相似文献   

13.
在渗流计算理论与极限平衡方法的基础上,对库水位升降作用下路基边坡的瞬态渗流场与稳定性进行数值模拟与研究。研究结果表明:1)在库水位上升过程中,浸润线位置几乎与库水位的变化“同步”,只存在短时间的“滞后”效应;而在库水位下降过程中,滑坡体内浸润线位置严重滞后于库水位的变化。2)库水位上升期间,路基边坡孔隙水压力增加,安全系数增加,最高库水位(175m)持续期,路基边坡孔隙水压力增加,安全系数缓慢降低;库水位下降期间,路基边坡孔隙水压力降低,安全系数迅速降低,最低库水位(145m)持续期,路基边坡孔隙水压力降低。安全系数缓慢增加。  相似文献   

14.
水位下降对裂隙性路基边坡稳定性影响机理分析   总被引:1,自引:0,他引:1       下载免费PDF全文
王春明 《路基工程》2010,(6):111-115
为揭示水位下降对裂隙性路基边坡稳定性的作用机理,基于饱和-非饱和渗流理论,研究了裂隙深度、裂隙开口宽度、裂隙分布位置、库水位下降速率等对裂隙性边坡稳定性的影响。结果表明:裂隙越深,饱和区域越大,边坡稳定性越低;裂隙开口宽度的大小对稳定性的影响不大;裂隙分布在坡面和坡底时稳定性较低;库水位下降速率主要影响裂隙层达到饱和的快慢,对边坡的长期稳定性的影响则可忽略;裂隙边坡稳定性随库水位不断下降而减小,当库水位水位较低或稳定后,其安全系数基本不变。在库水位下降直至稳定过程中,安全系数无裂隙边坡始终大于裂隙边坡。  相似文献   

15.
降雨入渗对土石坝边坡稳定性影响的分析研究   总被引:1,自引:0,他引:1  
降雨入渗是土质边坡失稳的主要诱发因素,很多土石坝坝坡滑坡都与降雨有着密切的关系。在饱和-非饱和渗流理论及土石坝填土土—水特征曲线的基础上,对土石坝在降雨入渗情况下非饱和区基质吸力的变化及暂态饱和区的形成进行分析,结合工程实例,采用极限平衡法在考虑不同降雨强度及持续时间下对非饱和渗流土石坝下游坝坡稳定性的影响进行分析。计算结果表明,降雨入渗导致土石坝浸润线的升高,从而使得原浸润线以上区域出现暂态饱和区,孔隙水压力增加,最终导致坝坡稳定性的降低,降雨强度越大或降雨历时越长,坝坡安全系数降低越多,坝坡安全系数在降雨持续2~4 h时降低的最快。  相似文献   

16.
山区公路经常沿水库修筑,水库的蓄水与放水能引起水位的循环升降变化.水位变化对边坡稳定有较大影响.基于Plaxis有限元软件的渗流计算和边坡稳定的强度折减法计算功能,以一个实际库岸边坡为算例,分析了水位升降变化及下降速率、土体渗透系数、是否考虑超孔隙水压力对边坡稳定性的影响.分析结果表明,当土体设置为排水条件时,不管水位...  相似文献   

17.
针对以往路堤渗流与稳定数值分析在同一模型中使用单一密度所存在的不足,提出了一种考虑密度分区的分析方法,基于现场试验测得的不同密度区域渗透系数、抗剪强度及土水特性参数,分析了在降雨条件下密度差异对路堤边坡渗流场与稳定性演化规律的影响。结果表明密度分区模型对路堤边坡渗流场与稳定性数值计算结果的影响较显著,采用分区模型进行仿真分析时,边坡临空面两侧土体密度越低,其孔隙水压力变化越快,土体越容易达到饱和;密度较低的浅层土体容易形成水流通道,使入渗雨水在坡脚处汇集,造成水毁破坏;内部区域密度相同时,分区密度差别越大,边坡安全系数越低。  相似文献   

18.
库水位变化会诱发库岸路堤边坡发生失稳破坏。为了分析粉质黏土库岸路堤边坡安全系数在水位骤降条件下的变化规律,文中以湖南某库岸路堤边坡为例建立数值分析模型进行有限元分析,根据数值分析结果提出库岸边坡失稳后的优选处治方案。结果表明,边坡内部水位线随外界水位的下降而下降,但具有一定的滞后性;边坡安全系数随着水位下降时间呈二次函数变化;卸载+滑动面基底片石换填处理方案具有工艺简单、施工快捷、造价较低的特点,推荐采用该方案进行处治。  相似文献   

19.
吴国雄  罗利娟  陈麟 《公路》2011,(10):18-22
库岸高填方路堤的稳定性受库水位涨落影响较大,同时,采用不同的土水特征曲线,边坡的稳定性计算结果也不相同.计算了当边坡土体的饱和含水量、饱和渗透系数相同时,3种不同的土水特征曲线对应的边坡安全系数,并得到了以下结论:土水特征曲线对考虑非饱和特性的土质边坡安全系数影响较大;采用黏土土水特征曲线计算出的边坡安全系数较粉土和砂...  相似文献   

20.
结合重庆奉节宝塔坪旅游码头工程的安全评估和加固方案研究,对库区大水位差码头的库岸稳定性进行了分析.分析中考虑土中水的渗流和土体的变形耦合,求出了在稳定渗流条件下库岸的浸润面,并计算出孔隙水压力.进而计算模拟了库岸的施工过程和水位陡降时库岸的安全系数发展规律.得到了内河大水位差重力式码头库岸破坏模式以及结构安全性指标.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号