首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用有限元软件ABAQUS,建立了考虑轮胎-路面不均匀接触压力分布的半刚性基层沥青路面结构动力响应分析三维有限元模型,并就不同面层-基层层间接触状态对沥青面层结构响应的影响进行了分析。结果表明,不同层间接触状态下,沥青层底应变响应时程曲线的形态一致,但完全连续和非连续状态下应变响应峰值相差较大;实际使用过程中,随着沥青路面面层-基层层间接触状态的衰变,层底弯拉应变会显著增大,易导致面层层底的疲劳开裂。  相似文献   

2.
基层结构参数对沥青混凝土路面力学响应的影响分析   总被引:1,自引:0,他引:1  
左俊朝  周正峰  曹林涛 《公路》2012,(10):28-33
基于有限元软件ABAQUS,建立沥青混凝土路面结构三维有限元模型,分析了基层结构参数对沥青混凝土路面力学响应的影响。揭示了基层厚度、基层模量和基层与面层或底基层接触条件变化,对路表弯沉、面层层底拉应力和基层层底拉应力等路面力学响应量的影响规律;结合正交试验,提出了在基层结构参数中,路表弯沉受基层厚度影响显著,面层层底拉应力受基层与面层之间的接触条件影响最为显著,基层层底拉应力受基层模量影响显著。  相似文献   

3.
为更准确地模拟沥青路面实际的受力状态,基于弹性层状理论,借助大型有限元分析软件ANSYS,建立了沥青路面三维有限元粘弹性模型,并对其施加非均布垂直和切向摩擦行为的共同影响,分析车辆在匀速行驶时,沥青路面在不同载重车辆荷载作用下的动力响应。结果表明,纵向最大拉应力位于基层层底,纵向最大压应力位于沥青面层。超载显著增加了各层结构应力,加速了路面结构的破坏。路面设计时应提高上层材料的抗压强度。  相似文献   

4.
为研究半刚性基层与沥青面层的层间接触状态对路面结构力学响应和疲劳寿命的影响,选取典型半刚性基层沥青路面结构,采用Bisar3.0软件中的剪切弹性柔量参数AK作为基-面层层间接触状态的评价指标进行路面结构力学计算,分析不同层间接触状态下沥青路面结构的应力、应变、弯沉等力学指标的变化规律,并计算了层间不同接触状态下路面结构的疲劳寿命.结果显示:剪切弹性柔量可以较好的表征基-面层层间接触状态;弯拉应力和剪应力受基-面层间接触状态的影响较大,当基-面层间接触状态由连续变为滑动时,沥青层底弯拉应力的涨幅为528.25%,沥青层底剪应力的涨幅为157.3%,而弯沉受基-面层间接触状态的影响较小;基-面层间保持连续的接触状态可以提高层间抗剪切能力,延长路面的使用寿命.  相似文献   

5.
为研究沥青路面层间接触位置和接触状态对路面结构内力学指标的影响,选择典型的高速公路半刚性基层路面结构,利用BISAR3.0软件计算分析不同层间接触位置时的路面力学指标,并探讨不同基面层接触状态下沥青路面力学响应和疲劳寿命的变化规律。结果表明:面层与面层、面层与基层、基层与底基层之间在完全光滑时对拉应力、拉应变、剪应力影响显著,弯沉受层间接触位置的影响变化不大;随着基面层间滑动系数的增加,路面结构内的应力、应变逐渐增大,在完全滑动时下面层底的拉应力、剪应力和拉应变分别是完全连续时的2.93倍、2.45倍和69.36倍;在基面层间滑动系数小于0.6时沥青路面的疲劳寿命降幅较小,随后降幅逐渐增大,当基面层间完全光滑时,疲劳寿命较完全连续时下降44.5%。  相似文献   

6.
为了研究不同接触状态(连续、弱连续、光滑3种状态)对沥青路面结构影响,采用Ansys建立了典型半刚性基层沥青路面结构模型,计算了沥青路面结构在不同接触状态下的力学响应,以及路表弯沉、最大剪应力、层底拉应力、层底拉应变对路面结构的影响。结果表明:随着层间接触从连续转变为光滑状态,路表弯沉迅速增大、相应的层底拉应力也迅速增长,进而使得横向裂缝发生几率急剧增大。因此结构层间接触状态的变化将会引起结构层内应力波动,使得主应力应变向不利方向发展,所以路面层间接触的设计和施工非常重要。  相似文献   

7.
采用ABAQUS建立了沥青路面结构的三维有限元模型,对典型沥青路面的动力学特征进行了模拟计算,通过分析路面结构动力响应量和结构参数的关系,获得了两者的正负相关性,并提出了改善路面结构受力状态的有效途径。研究结果表明:面层模量一定时,随基层模量的增加,路表弯沉下降,半刚性路面和组合式路面基层层底应力增加;当基层模量一定时,随面层模量的增加,半刚性路面路表弯沉的变化较小,倒桩式路面和组合式路面路表弯沉变化明显,且组合式路面的基层层底应力明显提高;随基层模量增大,半刚性路面收底基层层底应力变化显著,受面层模量影响较小;当面层模量达到2 000 MPa后,基层模量对倒桩式路面底基层层底应力影响可忽略;面层模量较高时,基层模量和面层模量的增加,组合式路面的底基层底应力减小;随基层厚度的增加,路面各力学响应指标逐渐减小,基层厚度大于40 cm时,通过增加基层厚度来改善路面疲劳开裂效果减弱;基层厚度小于20 cm时,底基层的弯拉应力较大,路面基层为主承重层,承担较大的荷载作用,因而可通过提高基层厚度来抑制弯拉破坏,改善基层受力。  相似文献   

8.
为研究沥青路面在移动荷载作用下的实际动力响应规律,依托345国道工程铺筑的沥青路面试验路,采用落锤式弯沉仪(FWD),通过埋设于路面结构中的应变传感器,获取FWD荷载作用下沥青路面的层底弯拉应变响应。基于FWD荷载下的路面实测动力响应表明,路面结构层层底横向、纵向应变的脉冲信号呈现受拉状态,竖向应变呈现受压状态。横向应变脉冲峰值呈现逐渐递减的趋势:εt(下面层层底)>ε(t(底基层层底))>ε(t(下基层层底))。纵向应变脉冲峰值也呈现逐渐递减的趋势:ε(l(下面层层底))>ε(l(底基层层底))>ε(l(下基层层底))。当FWD荷载作用结束时,下面层层底横向、纵向、竖向应变存在残余应变现象。基于ABAQUS软件建立的三维有限元模型,计算在FWD荷载作用下的动力响应表明,横向分布上,从承载板中心开始,应力应变逐渐减小,最大峰值出现在承载板中心下方。沥青层应变峰值和温度、荷载呈现正相关,下面层层底三向应变峰值与温度、荷载、弯沉呈指数增...  相似文献   

9.
为研究动态荷载作用下沥青路面的力学特性及其使用性能,以Abaqus有限元软件为平台,建立沥青路面三维有限元动力分析模型,对比分析3种典型沥青路面结构的动力行为特征,进行路面性能评价,并开展沥青路面的结构组合优化分析。研究结果表明:随基层厚度增加,各动力响应量表现为路表弯沉、底基层层底应力和路基顶压应变逐步递减;面层层底应变和层间剪应力逐渐减小,并且随厚度增加,其变化逐渐减弱;当基层厚度20cm,底基层承担较大弯拉应力,随基层厚度增大,基层逐渐成为主要承重层;半刚性路面(S1)整体刚度大,并能较好地抑制沥青层开裂及路基永久变形,倒装式路面(S2)的各项动力力学指标均处于不利状态,组合式路面(S3)的沥青层剪应力指标最优;采用动力指标与结构参数之间的正、负相关性及其显著性分析方法可更直观判别路面结构优化方向,为改善路面受力状态,对S1结构应提高基层厚度、降低面层模量,对S2结构应提高基层厚度,对S3结构应提高基层厚度与面层模量。  相似文献   

10.
全厚式沥青路面层间接触状态数值模拟   总被引:2,自引:0,他引:2  
路面各层间的接触状态直接影响着路面的使用性能.通过有限元仿真模拟全厚式沥青路面不同的层间接触状态,并采用路表弯沉、沥青层底拉应变以及土基顶压应变3大指标分析其对路面寿命的影响.计算结果表明,对于全厚式路面来说,基层与底基层之间保持连续比面层与基层之间保持连续更为重要.根据路表弯沉计算最大路面寿命,若沥青稳定基层与底基层之间是不连续的,则其路面寿命由沥青层底拉应变决定;反之,路面寿命则由土基顶压应变决定.  相似文献   

11.
斜坡路基沥青路面结构动力响应分析   总被引:1,自引:0,他引:1  
斜坡地段公路的主要破坏形式是斜坡路基的稳定和沥青路面的纵向开裂。斜坡路基沥青路面的力学行为因其特殊的结构形式有其显著特点。现场调查表明轮载动力作用直接影响斜坡路基稳定及上承路面结构的响应。采用有限元软件ABAQUS建立了斜坡路基路面动力计算模型,分析了车辆荷载作用下斜坡路基动应力、路表弯沉以及基层层底拉应力的变化规律,重点研究了车辆轴载、行车速度、面层刚度、面层厚度、基层刚度、基层厚度、路基模量等外加荷载状态、路面层状组合与材料力学性能方面的参数对斜坡路基沥青路面结构动力响应的影响。分析认为斜坡路基填筑质量、基层厚度和动力作用对路面响应具有重要影响,设计、施工和管理中必需采取有针对性的措施以防止路面的早期破坏并保证路面的长期使用性能。  相似文献   

12.
层间接触状态是影响半刚性基层沥青路面受力特性及损坏状况的重要因素。为分析面层内及面层与基层间设置应力吸收层时,温度及车辆荷载作用下,应力吸收层与结构层间粘结状况对路面结构内应力分布的影响,将应力吸收层模拟为正交各向异性中的横观各向同性材料。研究表明,可以通过设置应力吸收层不同参数而模拟层间不同接触状态;同时温度荷载作用下,设置应力吸收层时,若层间接触状态由连续变为光滑,则沥青面层内温度应力最大值由于新的应力释放方式的出现而减小。交通荷载作用下,当基层-面层间接触状态由连续变为滑动时,面层底面的受力状态由受压变为受拉,因此为减少路面开裂,结构层间应选择合适的接触状态,从而取得二者的平衡。  相似文献   

13.
沥青路面的层间接触状况,对路面的结构行为起着重要的作用。该文应用三维有限元,结合实测的轮胎-路面接地压力并考虑水平荷载作用力,通过模拟沥青层之间、沥青层与基层之间的层间粘结状况,即完全连续和层间分离(但考虑摩擦),计算沥青路面结构内的力学响应。计算结果表明:层间接触条件对沥青路面结构内的力学响应(如拉应力、压应力、剪应力或剪应变等)有明显的影响;层间不连续会加速路面损坏,产生裂缝、推移、变形、车辙等病害。  相似文献   

14.
为探讨不同结构沥青路面在静载作用下的力学性能,基于ANSYS有限元理论,拟定3种类型橡胶沥青路面结构并建立静力学有限元模型,分别针对沥青层层底拉应变、沥青层剪应力和半刚性基层拉应力进行数值分析。结果表明,3种结构路面在荷载作用下沥青层第一层层底均出现压应变,路面深度增至临近第二层层底时逐渐转变成拉应变;沥青层层底发生拉应变主要是由于沥青层模量和基层类型的影响;3种结构沥青路面层剪应力均随着路面深度的增加呈现先增后减的趋势。  相似文献   

15.
基于ABAQUS有限元软件建立三维沥青路面模型,通过计算两种典型沥青路面的不同结构层混合料发生不均匀性时,在行车荷载作用下各层层底的应力、应变和位移量,研究沥青混合料均匀性对沥青路面力学反应的影响。结果表明:沥青混合料均匀性影响路面力学反应参数;相同的行车荷载和环境因素下,柔性基层沥青路面的位移量比半刚性基层沥青路面的位移量大;沥青路面中拉应力几乎总是出现在路表面和基层层底,且出现在半刚性基层沥青路表面的拉应力一般比柔性基层沥青路表面的拉应力大。  相似文献   

16.
《公路》2020,(7)
为了研究不同温度下的层间黏结料的黏结强度,通过室内剪切试验建立了层间黏结料的强度~温度方程,引入层间黏结强度温度指数φ表征不同温度下的黏结状况。借助ABAQUS有限元分析软件,对不同黏结状态下半刚性基层沥青路面各结构层内应力进行了计算分析,研究了不同黏结状态对路面结构力学响应的影响。研究结果表明:温度较低时,层间黏结状态的变化对路面各结构层应力的影响并不明显;当温度高于35℃时(φ0.6),面层结构最大拉应力σ_(max)、最大剪应力τ_(max)出现了非线性快速变化;温度变化对基层、底基层黏结性能影响不明显。研究成果对科学解释沥青路面在不同温度下黏结性能行为机理提供了有力依据,为改善层间黏结条件、提升路面整体性能提供了理论支撑。  相似文献   

17.
张毅  聂欣 《华东公路》2012,(2):44-47
针对半刚性基层沥青路面的特点,考虑层间光滑及层间连续两种层间接触条件,运用BISAR3.0程序分析了其对半刚性路面结构中的最大层底水平弯拉应力、水平弯拉应变及层间剪应力因素的变化规律的影响。并用MATLAB软件将各主要力学响应量进行三维化处理,对个影响因素进行了全面的比较和分析。结果表明:当层间接触条件由完全光滑变为完全连续时,半刚性基层沥青路面的力学响应分布发生明显变化。  相似文献   

18.
实际道路中层间接触状态非常复杂,层间接触状态对路面的使用性能有直接影响;并且轮胎与路面的接地形状随着轮胎负荷及胎压的不同呈现出明显的非均匀分布,路面结构内的力学响应也随之发生不规则变化。基于此,采用三维有限元方法,分析在实测轮胎荷载作用下,完全连续、基、面层间光滑两种层间接触状态时,柔性基层和半刚性基层路面力学响应的差异。分析结果表明,层间光滑时面层内的最大剪应力以及层底拉应变均明显增大,相应路面车辙和开裂的机率大大增加,因此必须高度重视层间处理工艺。  相似文献   

19.
基于加速加载试验的半刚性基层沥青路面动力响应   总被引:2,自引:0,他引:2  
为了了解移动车辆荷载作用下半刚性基层沥青路面结构动力响应规律,修筑足尺试验场,采用置入式应变传感器,检测加速加载设备在车轮荷载作用下的面层底部动力响应,研究了面层底部横向分布以及轴重和温度对路面结构动力响应的影响。结果表明:移动车轮荷载下,面层底部纵向弯拉应变呈拉压应变交变状态,荷载位置仅影响其数值大小;横向弯拉应变比较复杂,胎冠下部呈现拉应变状态,2个轮胎之间及轮胎外侧呈现压应变状态,胎肩位置呈现拉压应变交变状态;面层底部弯拉应变无法充分反映超载车辆对路面的破坏作用;温度对路面结构的动力响应影响显著,30℃、40℃和50℃下沥青路面动力响应分别为常温状态下的3倍、8.9倍和13.3倍。  相似文献   

20.
采用Bisar软件建立路面结构计算弹性层状体系模型,通过改变级配碎石(水稳)基层的厚度和模量,对倒装式沥青路面力学响应进行分析,揭示了级配碎石(水稳)基层的厚度和模量变化对沥青路面弯沉、沥青面层层底拉应力和水稳基层层底拉应力等路面力学响应的影响规律;结合正交试验,提出在基层结构参数中沥青路面弯沉主要受级配碎石基层模量和水稳基层厚度的影响,沥青面层层底拉应力基本不受基层厚度和模量的影响,因而应考虑面层与基层间的粘结情况,水稳基层层底拉应力主要受水稳基层厚度的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号