首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究岩质边坡锚固界面的剪切作用,采用相似材料制作拉拔试件,借助多功能力学试验机和静态电阻应变仪,进行了不同锚固长度试件的静态拉拔试验,分析了拉拔荷载作用下锚杆-砂浆和砂浆-岩体两锚固界面上的剪应力分布规律。结果表明:相似材料的物理力学性质能够较好地反映出原型材料的特性,利用岩体、水泥砂浆和锚杆的相似材料制作拉拔试件进行锚固相似模型试验是可行的;不同循环荷载作用下,拉拔试件中的锚杆与锚固体上的轴力随着锚固长度的增加,呈现出指数规律衰减,且体现出了锚杆加固岩土体时具有有效锚固长度的特征;锚杆-砂浆和砂浆-岩体两锚固界面上的剪应力分布不均,沿锚固长度呈现为先增大后减小的单峰值曲线变化规律,从锚杆端部至剪应力峰值点,剪应力值迅速增大,其作用范围较小,但峰值点后剪应力值平缓下降,作用范围相对较大,并且随着拉拔荷载的增大,剪应力峰值逐渐向锚固深部转移;不同锚固长度拉拔试件的锚固失效均发生在砂浆-岩体界面上,同时锚固体界面上经历3个阶段,即弹性变形阶段、塑性变形阶段和脱黏滑移阶段。首次借助相似模型试验获得了岩质边坡锚固界面剪应力分布,揭示了锚固机理,不仅对相关试验,而且对边坡锚固的设计施工具有重要参考价值。  相似文献   

2.
针对CFS-GFS混杂加固钢筋混凝土梁的一种新型加固方法,使用非线性有限元方法,考虑胶层处出现空鼓缺陷对HFRP加固界面性能的影响,分别对缺陷尺寸、缺陷位置以及缺陷数量3组界面模型进行了数值模拟,得到了不同缺陷形式下胶层界面剪应力与正应力以及界面处混凝土第1主应力和纤维布轴向应力的分布规律。研究结果表明:胶层剪应力对空鼓缺陷大小的影响较敏感,随缺陷尺寸的增大,胶层端部最大剪应力呈非线性增长趋势。界面端部混凝土第1主应力随缺陷尺寸的增大,数值呈缓慢减小的趋势,且在缺陷空鼓处混凝土第1主应力出现突变。  相似文献   

3.
为了研究层状地基中锚杆拉拔受力的非线性特征,引入锚固界面剪切滑移的双指数曲线模型,基于荷载传递法基本原理,建立层状地基中锚杆荷载传递的非线性微分方程,推导锚杆轴向位移、轴力和界面剪应力的解析解,并给出层状地基中锚杆拉拔受力特性的计算方法与求解步骤。在此基础上,分析拉拔荷载作用下层状地基中锚杆的荷载-位移曲线特征、轴力与界面剪应力分布特征以及锚固体埋入位置对锚杆受力特征的影响,并以工程实例检验该方法的可行性。研究结果表明:作用荷载较小时,层状地基中锚杆的轴力和界面剪应力分布特征与均质地基中锚杆的轴力和界面剪应力分布特征基本一致;作用荷载较大时,地基土层状分布特征对锚杆拉拔受力特性具有显著的影响,锚杆轴力和界面剪应力在土层分界面处具有明显的界面效应,即二者在土层分界面处分别存在明显的转折点和跳跃点;锚固体埋入密实地基层中的范围越大,锚杆的极限抗拔荷载也越大,延性也越好,实际工程中应将锚固体尽可能地埋置于硬土层之中;在锚固界面弹性黏结、塑性变形(局部软化)以及滑移破坏的整个全历程阶段,所提方法的计算结果与工程实测的锚杆荷载-位移曲线均吻合较好,反映了锚固界面剪切滑移与锚杆受力变形的非线性特征。  相似文献   

4.
为了明确寒区框架锚杆边坡支护结构的工作机理,建立了框架锚杆支护冻土边坡的水热力耦合计算模型,采用有限元法进行了求解,基于MATLAB软件平台编写了计算程序,并通过已有的试验考证了程序的正确性。算例分析给出了边坡温度场、水分场、应力场和支护结构冻融反应的分布规律。结果表明:坡面上部受气温影响较大,融化时活动层含水量接近饱和,坡脚附近出现过饱和的"水泡";冻结时剪应力最大值是融化时的2倍,且分布均匀,边坡处于稳定状态,融化时剪应力在活动层和稳定冻土层交界面发生突变,边坡处于不稳定状态,该交界面是潜在滑移面;在一个冻融周期内,锚杆轴力、立柱内力和水平位移均先增大后减小,且随坡高逐渐增大,3种工况下结构内力和水平位移的关系为冻结时大于融化时大于初始时;冻胀时各层锚杆锚头处轴力增量最明显,增幅沿杆轴方向逐渐减小,融化时锚杆轴力和立柱内力大幅减小,且留有残余变形。因此,框架锚杆支护冻土边坡时,建议支护结构应按冻胀工况进行设计和计算。  相似文献   

5.
为了明确寒区框架锚杆边坡支护结构的工作机理,建立了框架锚杆支护冻土边坡的水热力耦合计算模型,采用有限元法进行了求解,基于MATLAB软件平台编写了计算程序,并通过已有的试验考证了程序的正确性。算例分析给出了边坡温度场、水分场、应力场和支护结构冻融反应的分布规律。结果表明:坡面上部受气温影响较大,融化时活动层含水量接近饱和,坡脚附近出现过饱和的“水泡”;冻结时剪应力最大值是融化时的2倍,且分布均匀,边坡处于稳定状态,融化时剪应力在活动层和稳定冻土层交界面发生突变,边坡处于不稳定状态,该交界面是潜在滑移面;在一个冻融周期内,锚杆轴力、立柱内力和水平位移均先增大后减小,且随坡高逐渐增大,3种工况下结构内力和水平位移的关系为冻结时大于融化时大于初始时;冻胀时各层锚杆锚头处轴力增量最明显,增幅沿杆轴方向逐渐减小,融化时锚杆轴力和立柱内力大幅减小,且留有残余变形。因此,框架锚杆支护冻土边坡时,建议支护结构应按冻胀工况进行设计和计算。  相似文献   

6.
基于弹性理论建立了碳纤维加固钢筋混凝土梁的界面剪应力模型,研究了四点弯曲情况下的界面黏结胶层剪应力的分布规律,明确了改变各相关参数对界面黏结剪应力的影响程度。计算结果表明,界面黏结剪应力最大值位于碳纤维的黏结端部,并且剪应力随着距离的增加呈现出非线性递减趋势,当距离超过一定长度后,碳纤维与混凝土界面间的黏结剪应力值降为很小,其值基本接近于零,因此在实际工程中应注意端部的锚固。同时发现增加梁高度、胶层厚度可以降低碳纤维与混凝土界面黏结剪应力值;增加碳纤维粘贴层数和碳纤维端部距离支点的距离可以增大碳纤维与混凝土界面黏结剪应力值,此规律应在实际加固工程中加以利用。  相似文献   

7.
基于Coulomb摩擦模型与Drucker-Prager屈服准则,建立拉力型锚杆及压力型锚杆的非线性有限元模型,对比分析了不同荷载作用下两种锚杆的承载特性.研究结果表明:在不同的荷载作用下,压力型锚杆的轴力及其杆体剪应力随锚固深度的变化曲线与拉力型锚杆的轴力及其杆体剪应力随锚固深度的变化曲线存在着明显的差异,且两种锚杆的锚固体外侧剪应力的变化曲线同样有明显差异,拉力型锚杆的锚固体外侧剪应力峰值出现在锚固体外端,压力型锚杆的锚固体外侧剪应力峰值出现在锚固体内端;压力型锚杆的荷载-顶端位移曲线近似呈线性关系,而荷载-承载板位移曲线则呈现明显的非线性;压力型锚杆的张拉性能大大优于拉力型锚杆.两者的破坏模式一致,均为土层的剪切破坏.  相似文献   

8.
以北京地铁19号线新宫站基坑工程复合支护结构为例,运用MIDAS/GTS软件实现对基坑施工过程的模拟,分析支护参数对支护结构受力和变形的影响。结果表明:①随桩径增大,桩体水平位移逐渐减小,各层锚索轴力最大值逐渐减小。②随桩间距增大,桩体水平位移逐渐增大,各层锚索轴力最大值逐渐增大。③随锚索倾角增大,桩体水平位移逐渐增大,各层锚索轴力变化呈现出先增大后减小趋势;在倾角为15°时,锚索受力最大。④锚索锚固段长度越大,桩体水平位移越小,各层锚索轴力最大值均增大。  相似文献   

9.
为了研究广州某深基坑工程扩大头锚杆支护体系的工作性状,运用MIDAS/GTS软件对该支护体系进行了有限元数值模拟,并与相同情况下的普通锚杆支护体系的有限元模拟结果以及实际监测结果进行了对比分析。结果表明:与普通锚杆相比,扩大头锚杆的锚固效果较好,基坑支护桩桩顶的水平位移较小,支护桩附近的坑底土体隆起较小,坑外地表土体沉降较小。扩大头锚杆由于端部扩大而使锚固力增大,使得轴力在锚固段处最大值比较大,且在扩大头锚固段处能迅速减小。  相似文献   

10.
王仔章  王光勇 《公路》2020,(3):318-324
基于现场监测数据,采用数值分析方法研究了拱桥铺山岭隧道在底部动载作用下隧道锚杆的轴力和锚固水泥浆应力的动态响应规律。随着爆炸应力波传播,无衬砌影响的锚杆轴向拉应力在极短的时间里增加至峰值,最后趋于稳定,有衬砌锚杆轴力一开始都是向受压方向达到峰值,然后逐渐向反方向振动。每根锚杆从锚头到锚尾锚杆单元轴力都是先增加后减小,中间锚杆单元受拉较大。随着动载作用时间推移,无衬砌影响锚杆在动载作用下,锚杆锚固水泥浆应力逐渐上升到峰值并逐渐趋于稳定,每根锚杆的锚固水泥浆应力从锚头至锚尾由负向正方向转变,正负方向水泥浆应力峰值都是由中间向两端逐渐增大。受衬砌影响锚杆锚固水泥浆应力在动载作用后,锚杆锚固水泥浆应力发生多次振动,除了拱腰附近锚杆受到锚固水泥浆应力较小外,其他锚杆的锚固水泥浆应力从锚头至锚尾由正向负转变,峰值大小是先减小再增加。  相似文献   

11.
以具体工程实例为依托,采取动力有限元与无限元相结合的分析方法,建立锚固边坡振动模型,对列车长期高速振动荷载影响下边坡岩土体及其锚固结构的动力响应特征展开了研究。结果表明:竖向位移动力特征显示,在高速列车荷载作用下,边坡竖向位移及加速度的最大值发生在坡脚处,最小值发生在坡顶处,随着边坡高度增加,竖向位移逐渐降低,且预应力锚杆框架对列车振动引起边坡沉降起到了一定的控制作用;水平位移动力特征显示,随着边坡高度增加,无锚固边坡水平方向位移峰值逐渐增大,水平位移动力响应最大值出现在坡顶,而坡脚的水平位移最小;列车荷载持续作用下,边坡岩土体内振动荷载逐步向远端传播,边坡位移变化范围也逐渐开始扩大,位移量值也开始增大,坡脚至第二级中部位移量达到1mm;在列车荷载作用下,上排锚杆轴力呈波动缓降趋势,缓降幅度0.63%,下排锚杆轴力呈波动上升趋势,上升幅度0.55%;边坡底部动态响应最为明显,振动加速度增幅最大,速度增幅次之,位移变化幅值最小,表明边坡底部的动力响应敏感性要显著大于边坡其他部位,这在边坡设计、加固治理中应引起格外注意。  相似文献   

12.
通过运用ABAQUS有限元软件建立混合式基层沥青路面结构三维模型,针对不同轴载作用下的路面结构力学响应展开模拟分析,得出以下结论:随着轴载的增加,混合式基层沥青路面结构的路表弯沉、层底拉应力、层底压应力以及面层最大剪应力均逐渐增大;在轴载作用下,路面结构的路表弯沉、压应力及沥青面层的拉应力沿路面宽度方向呈"W"型对称分布,基层拉应力则呈倒"U"型对称分布;沥青面层的最大剪应力随着路表深度增加呈先增后减变化,而路面结构的压应力则随之逐渐减小。  相似文献   

13.
利用mindlin解推导所得锚杆加固岩体的锚杆轴力分布以及锚固界面剪应力分布规律,研究了影响锚固岩体应力分布的参数.进一步讨论锚杆加固岩体材料的耐久性与其应力分布规律之间的关系,并得出重要结论,为锚杆加固定量设计及相关工程实际应用提供了理论依据.  相似文献   

14.
基于对锚杆拉拔试验结果的实例分析,讨论了锚索锚固段剪应力沿长度的分布模式,得到了锚固段剪应力沿长度分布为在靠近锚固段顶端有最大值而其两侧逐渐减小的单峰曲线模式。  相似文献   

15.
GFRP锚杆是一种复合型材料,在工作状态下的变形分布情况是锚杆正常发挥加固作用的保证。检测数据表明,GFRP锚杆工作状态下的变形分布形式符合加固设计的一般要求,与钢筋锚杆的变形分布形式相似。随着荷载的增加,锚杆的应变及其传递深度均逐渐增大,锚杆距加载点最近的测点应变最大,与粘结介质界面间的破坏由加载点逐渐向锚杆深部扩展,应变沿锚杆向深部延伸方向快速衰减。  相似文献   

16.
为探讨非发泡型高聚物注浆材料在岩质基体中的锚固性能,以非发泡型高聚物和不同强度的混凝土空心圆柱筒为研究对象,采用中心拉拔模型试验,对高聚物锚固体与岩体界面间的黏结性能进行试验研究,并通过ABAQUS有限元软件对不同锚固长度下的极限拉拔力进行模拟计算。结果表明:1)锚固长度及锚固体直径对界面黏结强度有较大影响,且锚固长度的影响更为显著;2)当混凝土基体强度不大于30 MPa时,滑移面发生在基体一侧,且界面黏结强度随混凝土基体强度的增大而增大; 3)拉拔力对黏结强度的分布规律也有较大影响,随着拉拔荷载的增加,黏结强度由随着锚固深度的增加而减小,向随着锚固深度的增加先增大后逐渐减小过渡; 4)ABAQUS有限元软件可以很好地模拟不同荷载作用下轴力及界面黏结力的分布及传递规律。  相似文献   

17.
《公路》2021,(5)
在考虑路面结构层间接触的情况下,采用ANSYS建立路面结构三维有限元模型,通过编写APDL程序,分析了在行车速度为匀加速、匀减速和匀速状态下路面结构的动力响应规律。研究结果表明:在3种不同行驶状态下,随着层间接触系数的增大,路面结构各层的最大竖向剪应力呈增大趋势,路面结构各层的横向最大剪应力呈减小趋势,路面结构各层的X向、Z向拉应力、拉应变都呈减小趋势,说明良好的层间结合状态可以提高沥青面层的抗疲劳开裂能力。  相似文献   

18.
为分析粘结型锚杆力学行为,利用弹性力学中均布荷载作用下半无限大空间体问题的边界位移解,并考虑变形协调关系,求出界面处于弹性阶段时轴力、剪应力和位移表达式。结合试验P-w曲线的三个特征点和简化的界面剪应力沿杆长分布形式,求出三折线模型的峰值剪应力和残余剪应力,以及锚杆处于软化段、解耦段和滑脱段的轴力、剪应力和位移与锚固深度的关系式,并得到有意义的结论。  相似文献   

19.
通过有限元法分析了路面结构在垂直荷载作用下和垂直、水平荷载共同作用下的面层剪应力分布规律。结果表明,横向力分布系数影响剪应力随深度的分布规律;最大剪应力随横向力系数的增大而增大,两者呈线性关系;考虑水平力作用时,沥青面层的剪应力增大且峰值上移,易造成沥青路面发生车辙、推移、拥抱破坏,有必要将水平作用力纳入结构设计指标体系。  相似文献   

20.
利用ANSYS和蒙特卡罗方法,建立含有不同空隙结构的沥青混合料模型,施加0.7 MPa的竖向荷载后,提取应力应变值,进而研究空隙结构(包括形状、大小、空隙率)的差异对沥青混合料内部受力状态的影响.研究结果表明:X向拉压应变、Y向拉压应变最大值及X向压应力均随空隙边数的减少线性降低,Y向压应力最大值减小更加明显;空隙边缘路径上X应力极大值均出现在空隙的角点,Y向应力在角点处发生突变,最大值可达2.22 MPa,均值为0.59 MPa,尖锐处为易损伤区域;随着空隙变大,应力、应变基本呈增大趋势;空隙率的改变对X向应力与剪应力影响较大,且空隙率一旦超过10%,X向应力与剪应力急剧增大,之后趋于稳定.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号