首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
徐京海  潘博 《世界桥梁》2022,50(3):39-44
马鞍山公铁两用长江大桥主航道桥为(112+392+2×1 120+392+112) m三塔钢桁梁斜拉桥,Z3号墩基础承台为哑铃形结构,顶、底面高程分别为+4.5 m、-5.0 m,平面尺寸为36.8 m×81.8 m。结合桥位处地质情况,承台采用PC工法组合桩围堰进行基础施工,围堰平面尺寸为87.6 m×42.2 m、高30 m,其侧板采用?820 mm×14 mm锁口钢管桩+拉森Ⅵ型钢板桩交替布置的组合桩形式,围堰高度范围内设3层内支撑,经验算围堰结构满足规范要求。施工中,采用基准桩定位、分阶段消除累积误差以及精确调整合龙等技术保证围堰顺利合龙;通过深基坑井点降水开挖技术保证开挖面始终处于无水环境;通过动态监测技术对基坑支护结构受力及变形实施动态监测确保深基坑施工安全;采用优化原材料配合比及承台混凝土内分层布设循环冷却水管等措施有效减小混凝土水化热,保证承台混凝土施工质量。  相似文献   

2.
芒稻河特大桥主桥为(77+3×130+82)m预应力混凝土刚构-连续梁组合体系桥,主墩基础位于深水区,承台施工时抽水最大水头达18.7m。采用钢板桩围堰施工承台,围堰最大平面尺寸为45.6m×16.8m,采用拉森Ⅳw型钢板桩,单根桩长36m,围堰内设置5道内支撑。采用有限元软件,计算围堰3个主要施工工况下钢板桩和内支撑的变形、应力,以及围堰封底抽水完成工况下封底混凝土的抗浮安全系数和应力,计算结果均满足要求。施工时,采用定位导向架和平面定位框限位插打钢板桩,内支撑采用工厂拼装现场分层整体吊装、水下抄垫等工艺,应用水下分阶段吸泥、水下二次封底等施工技术,实现了深水钢板桩围堰快速安全施工。  相似文献   

3.
《中外公路》2021,41(3):130-134
济南凤凰路黄河大桥跨黄河主桥为三塔(钢塔)自锚式悬索桥,跨径组合为(70+168+2×428+168+70) m,中塔位于黄河中心位置,承台埋入河床较深,采用拉森IVw钢板桩围堰施工承台,围堰最大平面尺寸为37.1 m×27.1 m,桩长21 m,共设置3道横向围囹。采用Midas有限元分析软件,根据施工工序同时考虑内外水压力、土压力及水流作用,选取了4个荷载工况计算钢板桩及围囹变形及应力情况。计算结果表明符合规范要求。设置具有一定刚度的、坚固的定位导向架系统实施钢板桩的插打,基坑按"先安装支撑后开挖,分层支撑分层开挖"的原则开挖,开挖过程中利用传感器对围堰进行实时监测,实现深埋式承台钢板桩安全快速施工。  相似文献   

4.
针对珠海市洪鹤大桥工程先行标跨越洪湾涌12#墩地处深厚淤泥地质条件,为确保基坑支护结构的稳定性和安全性,综合考虑现场已有施工条件、承台埋深、承台结构形式、地质及水文条件后,决定采用钢板桩围堰方案,并对围堰结构进行了设计计算。在围堰结构处于最不利工况条件下,对内支撑受力、钢板桩强度及基底土体抗隆起进行了验算,结果均满足规范要求。  相似文献   

5.
广东佛山龙翔大桥主航道桥为(118+2×202+93)m连续梁桥,主墩均采用圆端形承台(尺寸为39.25 m×17.5m×5.0m).3号、4号主墩位于水中,均采用无现浇封底混凝土的钢-混组合吊箱围堰施工,围堰主体结构为混凝土底板-钢板桩壁体组合.在围堰施工过程中,混凝土底板及钢壁体在加工场内分块加工并运输至墩位,逐块...  相似文献   

6.
武汉青山长江公路大桥主桥为(350+938+350)m双塔双索面斜拉桥,大桥南主墩基础由大直径钻孔桩及哑铃形承台组成。承台平面尺寸巨大(98.9m×39.5m),埋置深度约15m,需进行超大型深基坑施工。承台采用锁口钢管桩围堰施工方案,围堰平面设计为101.7 m×41.3m的正多边形哑铃结构,总高35m,其中锁口钢管桩长33m,钢管桩顶部设有2m高单壁钢围堰(用以现场根据实时水位进行接高)。围堰共设有3层内支撑,内支撑为1.8m×1.2m的钢箱结构,封底混凝土厚5m,在承台系梁处设计8根1.8m辅助桩以减小封底混凝土应力。采用MIDAS软件对围堰整体及局部受力进行分析,结果表明,围堰结构各项指标均满足规范要求。  相似文献   

7.
刘跃武 《桥梁建设》2012,42(Z1):112-115
天津海河春意桥主桥跨径布置为57.5 m+85 m+57.5 m,上部结构采用钢箱梁结构形式,主桥水中墩承台基坑开挖深度在水面以下12.5m,采用拉森钢板桩围堰的基坑支护形式施工.施工中将带锁口的拉森钢板桩打入承台基坑四周的河床,钢板桩之间通过锁口互相咬合,形成1个封闭的能够有效阻止水流渗透的长方形围堰,同时在围堰内加设3道内支撑,之后在封闭的围堰内进行基坑的抽水及开挖.  相似文献   

8.
夹溪2号桥桥址位于金华市境内,两侧桥台位于山坡,横向较陡,其中34#、35#台为连续梁主墩,承台尺寸为:下承台15. 2m×23. 2m×4m、上承台14m×22m×2m。承台开挖深度为7. 98m,且承台位于夹溪边,地下水位较高,故采用钢板桩围堰对其进行支护开挖施工。本工程采用理正深基坑7. 0软件进行建模计算分析,单元计算和整体计算相结合来确定钢板桩嵌入深度、稳定性及围檩、支撑的强度及刚度等。本文所采用的方法对以后类似工程具有可借鉴性,为其提供可参考的依据。  相似文献   

9.
昌九高铁扬子洲赣江公铁大桥西支主桥为(48+144+320+144+48) m无砟轨道钢箱桁组合梁斜拉桥。桥塔墩位于通航河道内,桥位处河床覆盖层浅,基岩强度高,基础由大直径钻孔桩和矩形嵌岩低桩承台组成,承台采用锁口钢管桩围堰施工方案。G33号主墩围堰平面设计尺寸54.56 m×28.52 m,锁口钢管桩采用Q345B材质■1 020 mm螺旋钢管,长28 m,钢管桩之间采用C-T形锁扣连接;围堰设置4层内支撑,单层内支撑设3道对撑,内支撑四角设型钢斜撑;基底设置混凝土垫层参与围堰结构受力。围堰采用XR360旋挖钻机在岩层中引孔,孔内换填细砂后插打钢管桩,钢管桩壁内、外两侧换填砂采用高压旋喷注浆加固。围堰设置智能化监测系统,对围堰受力、变形等进行实时动态监控。实践证明,该桥围堰结构安全可靠、止水效果良好、施工快捷高效。  相似文献   

10.
本文介绍了小榄水道桥主L2号墩承台钢板桩围堰的设计及施工方案,设计中选用钢板桩作为主受力结构,选用钢管作为内支撑结构,围堰结构采用手动计算为主,软件辅助的方法进行验算。土压力采用朗金理论进行计算,钢板桩结构采用等值梁法和盾恩近似法进行计算。因水的流速很小,在围堰结构验算时忽略不计。  相似文献   

11.
杭州钱江铁路新桥位于钱塘江强涌潮地区,部分墩水下承台基础采用拉森Ⅵ型钢板桩围堰施工.以该桥56号墩为例,介绍拉森Ⅵ型钢板桩围堰施工及计算.钢板桩围堰施工期间,其外侧土压力按静止土压力,内侧土压力按被动土压力计算.2种最不利工况,第1种为钢板桩围堰吸泥完成到封底前,主要确定钢板桩入土深度及验算钢板桩、围檩及内支撑强度和刚度;第2种为钢板桩围堰抽水完成后,仅验算钢板桩围堰、围檩及内支撑强度和刚度.强涌潮时分2种工况计算:第1种为在钢板桩围堰整体计算模型上增加迎潮面涌潮压力;第2种为在钢板桩围堰整体计算模型上增加迎潮面和两侧面涌潮压力.  相似文献   

12.
陈进楷 《公路》2021,(2):109-113
漳州开发区陆岛连接桥设计为独塔斜拉索桥,其主墩基础承台设计为直径为18.5m的圆形承台,采用直径为21.6m的圆形钢板桩围堰进行承台和下塔柱的施工。结合该工程实例,主要介绍了圆形钢板桩围堰的适用性、设计要点及施工工艺,总结了施工过程中出现的一些问题及采用的措施,用以提高钢板桩围堰的施工质量及施工进度,为同类工程提供借鉴。  相似文献   

13.
珠海洪鹤大桥主桥由2座主跨均为500 m的双塔双索面结合梁斜拉桥串联而成,其中8号主墩位于海岸浅滩区,墩位处淤泥层厚8.8~37 m,覆盖层平均厚48 m,岩层埋深较深,且呈斜面发育,岩石强度高达100 MPa。8号主墩承台尺寸为42.1 m×22.6 m×6.5 m,采用?2.8 m钻孔灌注桩群桩基础,采用先平台后围堰工序施工。钻孔平台采用土工布砂袋围堰筑岛施工技术,解决了深淤泥地质中筑岛施工容易出现的滑移和沉降;钻孔桩采用“旋挖钻+回旋钻”组合成孔技术进行钻孔深度超100 m的超深大直径嵌岩桩施工,充分发挥2种钻机在不同地质和钻孔深度的优势,极大提高了成孔效率;承台深基坑围堰采用“大型钢板桩围堰+干挖法”施工技术,有效减少了深基坑围堰施工中围堰的变形失稳和沉降。  相似文献   

14.
鄂东长江大桥主5号墩位于长江北河道内,基础为钻孔灌注桩群桩基础,高桩承台.承台尺寸为42 m×29.5 m×8 m,采用有底钢管围堰施工.围堰由壁板、底板、围檩支撑、定位、限位、下放及底板提吊等系统组成.首次采用钢管作为围堰壁板结构.壁板单元由钢管组焊接而成,各单元现场用螺栓连接.主5号墩承台钢管围堰施工已取得成功.从结构比选、设计、安装等方面介绍该承台有底钢管围堰.  相似文献   

15.
徐启利 《桥梁建设》2021,51(1):115-120
平潭海峡公铁大桥3座通航孔斜拉桥的6个桥塔墩均采用哑铃形高桩承台,元洪航道桥N04号墩承台平面尺寸为81.0 m×33.0 m,厚9.0 m,混凝土方量为18 104 m3.为节省造价,桥塔墩承台施工均利用主体防撞箱作围堰侧板,增加底板、系梁桁架、单壁隔舱、内支撑等施工结构,组成双壁钢吊箱围堰.单个围堰总长96.8 m...  相似文献   

16.
采用拉森IV型钢板桩围堰做水中墩承台,考虑到承台施工的实际情况,确定围堰中共设五道支撑,以便于承托承台施工。以大型桥梁主墩承台围堰为例,介绍了对拉森钢板桩围堰的结构形式、受力状态与计算方法,并通过解析法与递推法提出了围堰内支撑布置的最合适方案以及确定方法以及拉森钢板桩围堰的施工工艺做了仔细的分析。  相似文献   

17.
川南城际铁路临港长江公铁两用大桥主桥为主跨522m的公路与高铁共建平层斜拉桥,3号主墩采用66根2.5m钻孔桩基础,承台为矩形,尺寸67.0m×35.75m×7.0m。大桥3号主墩基础位于长江江心,地质条件复杂,岩面起伏变化差异大,采用哑铃形钢-混组合结构围堰(由下部混凝土咬合桩、中部冠梁、上部双壁钢围堰组成)方案施工。主墩基础施工期间,咬合桩采用旋挖钻机成孔,将咬合桩打入底部基层以下4m,同时在加工厂内进行双壁钢围堰水平分块、竖向分节制作;咬合桩施工后进行冠梁施工;最后通过预埋板和剪力钢筋将下部咬合桩和上部双壁钢围堰连接成整体,形成组合围堰。为保证施工期间的组合围堰安全,对其应力、变形进行了现场监测。结果表明:组合围堰结构状态表现良好,满足现场施工安全要求。  相似文献   

18.
沌口长江公路大桥主桥为(100+275+760+275+100)m钢箱梁斜拉桥,2号墩位于长江砂层区域,砂层厚度达7m,常年水深5m以上。2号墩钻孔桩施工完成后,采用钢板桩围堰进行水中深基坑承台施工。钢板桩采用拉森Ⅵ(600mm×210mm)钢板桩(长24m),围檩系统共3层,由3HN700×300型钢、Φ1 000mm×10mm钢管、2HN588×300型钢等组成。钢板桩围堰采用"先支法"施工工艺,首先采用导向挂靴工艺,分层整体下放围檩系统,下放到位后插打钢板桩;然后水下吸泥,浇筑封底混凝土,待封底混凝土强度达到设计要求后,以控制钢板桩内外水头差的原理进行分级抽水,并对第一、第二层围檩系统进行完善及体系转换;第三层围檩施工完成后,进行最后一级抽水及第一层承台施工,完成第三层围檩体系转换后拆除第三层围檩,进行第二层承台施工。  相似文献   

19.
钢板桩围堰广泛应用于江河湖海等水中承台的施工.因现场水文地质条件复杂、环境多变,对钢板桩围堰及其内支撑的安全性影响较大.鉴于此,针对海河特大桥R39号墩钢板桩围堰,在理论分析的基础上,进行各工况下围堰内支撑的受力情况与现场实测结果比较分析,两者基本一致,取得良好的效果.  相似文献   

20.
公安长江公铁两用特大桥主桥为(98+182+518+182+98)m双塔钢桁梁斜拉桥,该桥4号主墩采用2.8m/3.1m变直径钻孔桩承台基础,共有36根桩,承台为圆端形,长58.4m、宽33.6m、高6m,承台埋置于河床中。4号墩基础采用双壁钢套箱围堰施工方案,先围堰、后平台,先钻孔、后封底,最后进行承台施工。施工中采取了以下关键技术:底节围堰(长68.2m、宽40m、高16m)采用气囊法整体下河;由底节围堰、围堰内支撑桁架和桩位钢护筒组成半浮式水上平台作为钻孔平台;钻孔桩采用泥浆护壁的气举反循环旋转钻进工艺成孔;在钻孔桩施工后,下放围堰并接高,灌水、吸泥、下沉围堰,下沉到位后分区进行围堰封底,围堰抽水,分2层、按大体积混凝土工艺进行承台施工。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号