首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
通过建立道岔区板式无砟轨道有限元模型,计算分析了不同脱空状态对道岔区无砟轨道结构变形与受力的影响规律。结果表明:脱空对钢轨和道岔板的垂向位移影响较底座板大,道岔板受脱空影响最大;板角脱空对轨道结构影响最小,板端横向全部脱空对轨道结构变形和受力最不利。基于静力分析结果,提出了板式道岔不同伤损形式的脱空维修级别和判别标准。  相似文献   

2.
基于CRTS Ⅲ型板式无砟轨道结构参数,研究了不同脱空状态对无砟轨道模态的影响,并对轨道板自振应力进行了分析。结果表明:分析脱空对轨道结构模态的影响时,脱空厚度方向不宜处理为完全损坏,而应取一定的脱空厚度;板端脱空组合对轨道结构模态的影响最大,板中脱空影响最小;板中脱空时脱空形状对轨道结构的模态几乎没有影响;无脱空时轨道板自振应力在扣件处最大,不同脱空状态下轨道板自振应力在脱空区域与自密实混凝土接触边缘较大。研究成果可供无砟轨道脱空识别和结构优化设计参考。  相似文献   

3.
为研究CRTSⅠ型板式无砟轨道板端脱空对轨道动力特性的影响,铺设无砟轨道实尺模型,人工凿除CA砂浆模拟板端脱空,采用激振车对轨道施加振动荷载,测试并分析轨道振动位移和加速度等动力响应。结果表明:板端脱空对轮重减载率影响明显;板端脱空对钢轨和轨道板位移有一定影响,对底座板位移影响较小;脱空区钢轨和底座板均出现强烈振动,振动加速度约为无脱空的3倍;脱空造成轨道板剧烈振动,振动加速度增加10倍以上;底座板振动在脱空长度30cm时出现峰值,钢轨及轨道板在脱空长度大于70cm时振动加剧明显;随着激振频率的增加,轨道板板端脱空对轨道结构动力响应的影响更加明显。  相似文献   

4.
轨道板与自密实混凝土层之间的板端离缝是CRTSⅢ型板式轨道的主要伤损型式之一,为分析板端离缝对路基上CRTSⅢ型板式轨道动力特性的影响,建立车辆-CRTSⅢ型板式轨道-路基垂向耦合振动模型,研究不同板端离缝长度对车辆和轨道系统动力响应的影响。研究结果表明:板端离缝将增大车辆和轨道结构的动力响应。当脱空长度超过1.54m时,轨道结构的垂向位移出现拐点,扣件系统上拔力接近允许限值10 kN,板端离缝区域附近的自密实混凝土层所受的垂向压应力增大28.75倍。板端离缝导致自密实混凝土层更易发生劣化,从无砟轨道耐久性方面考虑,建议当CRTSⅢ型板式轨道板端离缝长度达到1.54 m时应及时进行养护维修。  相似文献   

5.
铁路桥梁是高速铁路系统中的重要组成部分,其健康状况对车辆运营安全具有重大影响.桥墩沉降会引起无砟轨道底座板产生脱空区域,给列车安全运行埋下隐患.分析桥梁上纵连板式无砟轨道底座板随桥墩沉降产生脱空区域的机理,推导桥墩沉降量与底座板脱空区域映射关系的解析表达式,计算底座板随桥墩沉降的位移曲线,并与有限元模型结果进行对比,最...  相似文献   

6.
以CRTSⅠ型轨道板中部砂浆离缝为研究内容,采用有限单元法,建立该型轨道结构的弹性地基梁-板模型,分析不同长度和高度的离缝对轨道竖向位移及应力变化情况,结果表明:离缝长度变化较高度变化对轨道结构的竖向变形及应力影响要大;离缝长度在1个扣件间距(0.6 m)范围内时,长度一定,高度的变化对轨道结构的变形及受力几乎没有影响;离缝长度不大于1 m时,高度大于0.42 mm后,离缝区域轨道板处于完全脱空状态。建议在对板中离缝进行养护维修时,应将防止离缝长度的发展作为主要工作,并将轨道板应力作为衡量离缝对轨道板影响的主要指标。  相似文献   

7.
根据单元板式无砟轨道路桥过渡段特点,提出4种搭板结构过渡方案,建立有限元模型,分析搭板脱空长度对轨道受力的影响,优化了单元板式轨道路桥过渡段的结构设计。设置搭板过渡方案可提高线路的平顺性、减少轨道板类型和优化轨道板受力。但不同的搭板布置对轨道结构受力影响较大,分析认为将搭板置入桥台一定距离,搭板两端和上方轨道板板缝对齐...  相似文献   

8.
基于弹性地基梁体理论,考虑宽窄接缝与轨道板之间界面开裂与CA砂浆脱空耦合伤损,建立伤损状态下的CRTS Ⅱ型板式无砟轨道-简支梁桥结构有限元模型,分析宽窄接缝与CA砂浆不同伤损型式和不同位置耦合伤损尺寸在正温度梯度荷载作用下对无砟轨道-简支梁桥结构受力及变形的影响。研究结果表明:宽窄接缝与CA砂浆耦合伤损较宽窄接缝界面开裂或CA砂浆脱空单一伤损型式对结构受力与变形更为不利;当耦合伤损面积超过0.975 m×0.765 m,长度超过0.975 m或宽度超过0.51m时,轨道板拉应力超过其抗拉强度,影响结构的正常使用;随耦合伤损尺寸的增加,轨道板和CA砂浆的垂向位移均显著增大,底座板和桥梁的垂向位移呈微弱减小趋势;宽窄接缝与CA砂浆耦合伤损位于轨道板板边对结构受力和变形影响最大,耦合伤损位于板端次之,耦合伤损位于板角影响最小。  相似文献   

9.
砂浆脱空是CRTSⅠ型板式无砟轨道典型病害之一,其与温度梯度荷载共同作用下,轮轨系统受力状态将受到较大影响。本文运用轮轨系统动力学原理和有限元法,建立列车-无砟轨道-路基系统耦合动力空间模型,计算分析温度荷载、脱空长度对车辆及轨道系统动力响应的影响。结果表明:温度梯度荷载仅对轨道结构动力响应影响较大;温度梯度荷载与板下脱空同时存在,脱空长度超过0.8m时,其对车辆及轨道系统动力响应影响较大,尤其当轨道板存在正温度梯度110℃/m、行车速度350km/h、脱空长度1.2m时,轮重减载率为1,严重威胁行车安全。建议高速铁路无砟轨道脱空长度不超过0.8m,并加强极端气候下的损伤检测。  相似文献   

10.
应用有限元方法建立土质路基上CRTS III型板式无砟轨道系统空间耦合模型,研究路基不均匀沉降作用下板式轨道的受力和变形特性,以及路基发生不均匀沉降时底座板和路基表层之间接触应力和脱空区域的变化规律。结果表明:路基发生不均匀沉降时,无砟轨道结构在重力作用下会发生跟随性变形;轨道板、自密实混凝土和底座板在路基沉降作用下的应力受路基沉降波长和幅值的综合影响,路基沉降幅值越大,轨道各层受力越大,波长为20~30 m的路基沉降对轨道应力的影响较大;底座板和路基表层间的接触应力和脱空区域随着路基沉降幅值的增大而增大,随着路基沉降波长的增大出现先增大后减小的变化趋势。由此可见,路基不均匀沉降会对轨道结构的受力和变形产生明显影响,严重时会造成轨道脱空,对行车安全舒适性产生较大影响,应加以严格控制。  相似文献   

11.
将超声反射检测方法引入无砟轨道充填层脱空病害检测中,以CRTSⅡ型板式无砟轨道为例,采用COMSOL有限元软件建立其有限元模型,进行无砟轨道超声反射信号的时域和频域特性分析。结果表明:当充填层黏结良好时,超声检测到的回波峰值较小,而脱空区域由于空气、水与混凝土材料阻抗差异过大,超声波在轨道板表面和脱空层之间多次反射,使得回波峰值增大,且随脱空长度的增长,反射系数呈对数上升的趋势。据此提出以反射系数时域值为无砟轨道层间脱空的评价指标,以网格划分、数据采集、滤波计算、云图评价为主要步骤的无砟轨道充填层脱空损伤超声反射检测方法。通过缩尺模型检测试验进行验证,并提出基于反射系数的无砟轨道充填层黏结状态分级评估标准,即:当反射系数小于等于0.4时,充填层没有缺陷,充填层状态良好;当反射系数在(0.4,0.7)区间时,充填层存在一定程度的病害;当反射系数大于等于0.7时,充填层存在较大面积脱空。  相似文献   

12.
板式轨道填充层作为轨道结构关键部位,在高频列车荷载和环境共同作用下出现脱空损伤,引起脱空位置轨道结构刚度改变。为有效检测板式轨道的轨道板脱空情况,采用数值仿真分析得到无砟轨道模态信息,利用轨道脱空区域广义柔度曲率局部峰值进行轨道脱空损伤识别。结合广义柔度、均匀荷载面(Uniform load surface, ULS)、曲率和局部信息熵,提出可定位损伤的ULS曲率信息熵,并在CRTS III板式轨道上进行验证。研究结果表明:广义柔度曲率利用轨道脱空前后模态信息计算轨道脱空损伤曲率差,能够有效定位脱空位置;ULS曲率信息熵表征值只需要轨道的一阶模态信息便能够有效地反映轨道脱空位置及面积,且克服了广义柔度曲率需要健康模态信息的不足;轨道对称位置上相同面积脱空的ULS曲率信息熵值相同;ULS曲率信息熵值与脱空面积和厚度成正相关关系;ULS曲率信息熵表征值具有较好的损伤识别敏感性,能够识别小于单个测点布置面积的0.1 m×0.1 m小面积脱空,并且对轨道板边脱空识别敏感性高于轨道板中脱空识别敏感性。  相似文献   

13.
无砟轨道结构轨道板裂缝和结构层间离缝会导致结构性能退化,承载力降低,危及行车安全。基于弹性地基梁—体理论,建立路基上无砟轨道结构有限元模型。在正常状态和轨道板底部存在不同程度离缝状态时,对轨道板在列车竖向荷载下产生裂缝的位置和路径,以及2种状态下轨道板的翘曲位移和翘曲时轨道板底部地基弹簧拉应力进行分析。研究结果表明:无砟轨道板仅在列车竖向荷载作用下不会产生裂缝。当轨道板底纵向全部脱空且横向脱空宽度达到钢轨底面内侧边缘位置时,列车竖向荷载板端加载不会生成裂缝,板中部加载会产生裂缝。裂缝大致沿着轨道板纵向中心线附近开裂,在板端斜向板两侧边缘发展,预裂缝能够有效阻断裂缝的扩展路径。  相似文献   

14.
CA砂浆脱空对框架型轨道板翘曲的影响分析   总被引:2,自引:2,他引:0  
CA砂浆填充层作为框架型板式轨道关键结构层,长期暴露于自然环境中,受列车荷载冲击、温度循环以及水的侵害等作用,砂浆层与轨道板间易产生脱空,劣化轨道结构受力状态。基于无砟轨道弹性地基梁体模型,分析了正常状态和砂浆层与轨道板间出现脱空时框架型板式轨道在温度梯度荷载作用下的受力情况,并针对板端横向全部脱空和板边纵向全部脱空两种常见脱空形式进行分析。结果表明,较低的砂浆弹性模量可减小轨道板翘曲和缓解列车荷载冲击作用;对于脱空状态,在正温度梯度作用下,轨道板受力和板角翘曲变形受脱空程度影响较大,而对砂浆层受力影响较小;在负温度梯度作用下,轨道板和砂浆层受力状态受脱空程度影响均不明显。  相似文献   

15.
郭杰  赵坪锐 《铁道建筑》2021,(1):101-104
以CRTSⅠ型、CRTSⅡ型、CRTSⅢ型板式无砟轨道和双块式无砟轨道为研究对象,建立有限元模型,研究列车荷载和典型病害对无砟轨道整体刚度的影响.结果表明:无砟轨道整体刚度随列车荷载的增大而增大,列车荷载的增大对路基区段无砟轨道整体刚度的影响明显大于桥隧区段;无砟轨道整体刚度随轨道板、底座板/支承层脱空长度的增大而减小...  相似文献   

16.
采用有限元软件ANSYS建立CRTSⅢ型板式无砟轨道模型,研究脱空形式和脱空程度对无砟轨道疲劳寿命的影响。采用混凝土弯拉疲劳方程计算无砟轨道疲劳寿命,计算时不考虑预应力和温度梯度仅考虑列车荷载的影响。计算结果表明,随着脱空程度增大,4种脱空形式均会显著降低无砟轨道疲劳寿命,且板端脱空的影响最大。据此提出了脱空等级划分原则,并依据无砟轨道疲劳寿命影响系数将无砟轨道脱空划分为轻度脱空、中度脱空和重度脱空3个等级。建议参照离缝的修补方法确定各脱空等级相应的修补材料和工艺。  相似文献   

17.
针对城市轨道交通穿越施工引起的轨道结构与隧道底板脱空的现象,采用ANSYS建立钢轨-钢弹簧浮置板道床-隧道底板的相互作用模型。考虑隧道底板变形方式、隧道底板最大变形值、Peck曲线沉降槽宽度、浮置板变形缝等影响因素,通过数值模拟计算轨道结构变形和内力、浮置板与隧道底板的脱空量和脱空范围,得出轨道结构与隧道结构相互作用的一般规律。计算结果表明:浮置板与隧道底板之间连接力弱,隧道底板发生不均匀变形时可能产生脱空;浮置板自身较大的刚度是其与隧道底板产生差异变形的主要原因,钢轨并不能对浮置板产生有效的约束;轨道与隧道结构的差异变形随隧道底板变形值的增大而增大,随沉降槽宽度的增大而减小;模型能够较全面地分析轨道与隧道结构相互作用问题,为计算穿越施工引起的既有轨道结构的变形、内力及其与隧道底板的脱空提供有效方法。  相似文献   

18.
针对路桥过渡段的不均匀沉降问题,通过建立轨道路基分析模型,结合大型商业软件ANSYS的APDL语言,应用迭代接触算法和单元生死技术模拟搭板与填土之间接触和脱空的不同受力状态;并基于地基均匀沉降和不均匀沉降两种模式,考虑搭板受力与变形的耦合,分析了搭板的受力特性与适应性。受力特性分析表明:随着脱空区长度的增加,搭板及轨道板板底纵向应力增加;板底最大纵向应力的载荷位置在桥台与1/2倍板长之间,且随着脱空区长度的增加,最不利载荷位置与桥台的距离增加;搭板发生完全脱空时,板长且厚的搭板的底部纵向应力比板短而薄的大。适应性分析表明:长度为6 m的搭板适用于处理地基沉降在5mm以内的桥头路段;长度为8 m的搭板适用于处理地基沉降在10 mm以内的桥头路段;长度为10 m的搭板适用于处理地基沉降在15 mm以内的桥头路段。  相似文献   

19.
穿越施工引起既有隧道及其上的轨道结构产生变形,给列车运营安全带来不利影响。将钢弹簧浮置板轨道视为弹性地基梁,建立钢弹簧浮置板轨道变形的控制微分方程。采用傅里叶级数法求解微分方程,得到关于未知级数系数的线性方程组,进而给出求解线性方程组的迭代方法。基于本文方法分析钢弹簧浮置板轨道与隧道底板相互作用规律。研究结果表明:浮置板自身的抗弯刚度使其与隧道底板存在变形差异,进而与隧道底板产生脱空;随着隧道底板变形的增大,轨道结构变形及脱空范围均增大;随着沉降槽宽度的增大,轨道变形与隧道底板逐渐趋近,脱空范围呈先增大后减小的趋势;钢弹簧刚度越大,间距越小,轨道与隧道底板越容易产生脱空,脱空范围越大。研究成果可为穿越施工中既有线轨道结构的安全评价提供理论依据。  相似文献   

20.
由于行车荷载、温度应力等因素的影响,无砟轨道板经常出现脱空、翘曲等问题,影响轨道交通的正常运营。但目前常用的轨道检测方法多集中在轨道高差、水平的检测上,对于轨道板在行车过程中产生的脱空检测效果不佳。本文对比冲击弹性波在无砟轨道板脱空检测中相对于红外线、电磁波等方法的优越性,并结合工程实际验证了冲击弹性波在无砟轨道板脱空检测中的可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号