首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
With increasing demand for air transportation worldwide and decreasing marginal fuel efficiency improvements, the contribution of aviation to climate change relative to other sectors is projected to increase in the future. As a result, growing public and political pressures are likely to further target air transportation to reduce its greenhouse gas emissions. The key challenges faced by policy makers and air transportation industry stakeholders is to reduce aviation greenhouse gas emissions while sustaining mobility for passengers and time-sensitive cargo as well as meeting future demand for air transportation in developing and emerging countries. This paper examines five generic policies for reducing the emissions of commercial aviation; (1) technological efficiency improvements, (2) operational efficiency improvements, (3) use of alternative fuels, (4) demand shift and (5) carbon pricing (i.e. market-based incentives). In order to evaluate the impacts of these policies on total emissions, air transport mobility, airfares and airline profitability, a system dynamics modeling approach was used. The Global Aviation Industry Dynamics (GAID) model captures the systemic interactions and the delayed feedbacks in the air transportation system and allows scenarios testing through simulations. For this analysis, a set of 34 scenarios with various levels of aggressiveness along the five generic policies were simulated and tested. It was found that no single policy can maintain emissions levels steady while increasing projected demand for air transportation. Simulation results suggest that a combination of the proposed policies does produce results that are close to a “weak” sustainability definition of increasing supply to meet new demand needs while maintaining constant or increasing slightly emissions levels. A combination of policies that includes aggressive levels of technological and operations efficiency improvements, use of biofuels along with moderate levels of carbon pricing and short-haul demand shifts efforts achieves a 140% increase in capacity in 2024 over 2004 while only increasing emissions by 20% over 2004. In addition, airline profitability is moderately impacted (10% reduction) compared to other scenarios where profitability is reduced by over 50% which pose a threat to necessary investments and the implementation of mitigating measures to reduce CO2 emissions. This study has shown that an approach based on a portfolio of mitigating measures and policies spanning across technology and operational improvements, use of biofuels, demand shift and carbon pricing is required to transition the air transportation industry close to an operating point of environmental and mobility sustainability.  相似文献   

2.
This paper estimates the total embodied energy and emissions modal freight requirements across the supply chain for each of over 400 sectors using Bureau of Transportation Statistics Commodity Flow Survey data and Bureau of Economic Analysis economic input-output tables for 2002. Across all sectors, direct domestic truck and rail transportation are similar in magnitude for embodied freight transportation of goods and services in terms of ton-km. However, the sectors differ significantly in energy consumption, greenhouse gas emissions, and costs per ton-km. Recent pressure to reduce energy consumption and emissions has motivated a search for more efficient freight mode choices. One solution would be to shift freight transportation away from modes that require more energy and emit more (e.g., truck) to modes that consume and emit less (e.g., rail and water).Our results show there are no individual sectors for which targeting changes would significantly decrease the total freight transportation energy and emissions, therefore we have also looked at the prospect of policies encouraging many sectors to shift modes. There are four scenarios analyzed: (1) shifting all truck to rail, shifting top 20% sector mode choice, (2) based on their emissions, (3) based on a multi-attribute analysis, and (4) increasing truck efficiency (e.g., mpg). Increasing truck efficiency by 10% results in similar energy and emissions reductions (approximately 7% for energy and 6% for emissions) as targeting the top 20% of sectors when selected based on emissions, whereas selecting the top 20% based on availability to shift from truck results in slightly less reductions of energy and emissions. Implementing policies to encourage higher efficiency in freight trucks may be a sufficient short term goal while efforts to reduce truck freight transportation through sectoral policies are implemented in the long term.  相似文献   

3.
This paper investigates how California may reduce transportation greenhouse gas emissions 80% below 1990 levels by 2050 (i.e., 80in50). A Kaya framework that decomposes greenhouse gas emissions into the product of population, transport intensity, energy intensity, and carbon intensity is used to analyze emissions and mitigation options. Each transportation subsector, including light-duty, heavy-duty, aviation, rail, marine, agriculture, and off-road vehicles, is analyzed to identify specific mitigation options and understand its potential for reducing greenhouse gas emissions. Scenario analysis shows that, while California’s 2050 target is ambitious, it can be achieved in transport if a concerted effort is made to change travel behavior and the vehicles and fuels that provide mobility. While no individual ‘‘Silver Bullet” strategy exists that can achieve the goals, a portfolio approach that combines strategies could yield success. The 80in50 scenarios show the impacts of advanced vehicle and fuels technologies as well as the role of travel demand reduction, which can significantly reduce energy and resource requirements and the level of technology development needed to meet the target.  相似文献   

4.
This paper investigates the well-to-wake energy consumption and greenhouse gas emissions of several key SOX abatement options in marine transportation, ranging from the manufacture of low sulfur fuels to equipping the vessel with suitable scrubber solutions. The findings suggest that a scrubber system, used with current heavy fuel oils, has the potential to reduce SOX emissions with lower well-to-wake energy consumption and greenhouse gas emissions than switching to production of low sulfur fuels at the refinery. A sensitivity analysis covering a series of system parameters shows that variations in the well-to-tank greenhouse gas emissions intensity and the energy efficiency of the main engine have the highest impacts in terms of well-to-wake emissions.  相似文献   

5.
The Intergovernmental Panel on Climate Change estimates that greenhouse gas emissions (GHG) must be cut 40–70% by 2050 to prevent a greater than 2 °Celsius increase in the global mean temperature; a threshold that may avoid the most severe climate change impacts. Transportation accounts for about one third of GHG emissions in the United States; reducing these emissions should therefore be an important part of any strategy aimed at meeting the IPCC targets. Prior studies find that improvements in vehicle energy efficiency or decarbonization of the transportation fuel supply would be required for the transportation sector to achieve the IPCC targets. Strategies that could be implemented by regional transportation planning organizations are generally found to have only a modest GHG reduction potential. In this study we challenge these findings. We evaluate what it would take to achieve deep GHG emission reductions from transportation without advances in vehicle energy efficiency and fuel decarbonization beyond what is currently expected under existing regulations and market expectations. We find, based on modeling conducted in the Albuquerque, New Mexico metropolitan area that it is possible to achieve deep reductions that may be able to achieve the IPCC targets. Achieving deep reductions requires changes in transportation policy and land-use planning that go far beyond what is currently planned in Albuquerque and likely anywhere else in the United States.  相似文献   

6.
本文以贵州省道路客运交通运输中出租车和公交车作为研究对象,采用IPCC能耗统计法计算客运交通运输温室气体中CO2的排放、在NEDC工况下对温室气体CH4、N2O排放进行核算,建立了2017年贵州省交通道路运输温室气体碳排放清单。结果显示,贵州省道路客运交通中出租车万人均碳排放量为公交车的2.67倍。CH4排放的主要来源于天然气为燃料的公交车,N2O排放的主要来源于汽油为燃料的出租车。  相似文献   

7.
The paper challenges the conventional view that the movement of goods through supply chains must continue to accelerate. The compression of freight transit times has been one of the most enduring logistics trends but may not be compatible with governmental climate change policies to cut greenhouse gas emissions by 60–80% by 2050. Opportunities for cutting CO2 emissions by ‘despeeding' are explored within a freight decarbonisation framework and split into three categories: direct, indirect and consequential. Discussion of the direct carbon savings focuses on the trucking and deep-sea container sectors, where there is clear evidence that slower operation cuts cost, energy and emissions and can be accommodated within current supply chain requirements. Indirect emission reductions could accrue from more localised sourcing and a relaxation of just-in-time (JIT) replenishment. Acceleration of logistical activities other than transport could offset increases in freight transit times, allowing the overall carbon intensity of supply chains to reduce with minimal loss of performance. Consequential deceleration results from other decarbonisation initiatives such as freight modal split and a shift to lower carbon fuels. Having reviewed evidence drawn from a broad range of sources, the paper concludes that freight deceleration is a promising decarbonisation option, but raises a number of important issues that will require new empirical research.  相似文献   

8.
Germany is by far the largest contributor of greenhouse gas emissions in the European Union but adopted its own climate action plan to achieve greenhouse gas neutrality by 2050. The country’s third-largest emitter of greenhouse gas emissions is the transportation sector. As of January 2019, 99.7% of heavy-duty trucks registered in Germany run on diesel while the share of alternative fuel-powered passenger cars increases steadily. Apart from rising emissions, the industry faces a growing shortage of qualified truck drivers. A solution to increasing emissions and the shortage of drivers are autonomous and alternative fuel-powered heavy-duty trucks. We employed a choice-based conjoint analysis with employees from freight companies in Germany to find out how they assess the main attributes of innovative trucks. Our results reveal that the maximum driving range is the most important attribute followed by the refueling/recharging time. Tank-to-wheel emissions, on the other hand, was ranked as the least relevant attribute. Moreover, we present customers’ preference shares for future heavy-duty trucks until 2035. According to our results, freight companies are generally open to switching from conventional to low emission and (conditionally-) automated heavy-duty trucks, however, a close collaboration between truck manufacturers, customers, infrastructure companies, and policymakers is essential to spur the penetration of autonomous and alternative fuel-powered heavy-duty trucks.  相似文献   

9.
Reducing greenhouse gas (GHG) emissions from transportation in the context of the climate change issue and the associated Kyoto Agreement of 1997 is a challenge. Since urban transportation is a major contributor to greenhouse gases, measures are required to reduce these emissions. Given that during peak periods, road vehicles propelled by petroleum fuel‐based internal combustion engines produce a high level of GHG emissions due to stop and go operations, measures to improve traffic flow can play an effective mitigation role. This paper describes a simulation‐based methodology and a case study for the quantification of GHG emission reduction owing to advanced traffic control systems.  相似文献   

10.
ABSTRACT

This paper investigates strategies that could achieve an 80% reduction in transportation emissions from current levels by 2050 in the City of Philadelphia. The baseline daily lifecycle emissions generated by road transportation in the Greater Philadelphia Region in 2012 were quantified using trip information from the 2012 Household Travel Survey (HTS). Emissions were projected to the year 2050 accounting for population growth and trends in vehicle technology for both the Greater Philadelphia Region and the City of Philadelphia. The impacts of vehicle technology and shifts in travel modes on greenhouse gas (GHG) emissions in 2050 were quantified using a scenario approach. The analysis of 12 different scenarios suggests that 80% reduction in emissions is technically feasible through a combination of active transportation, cleaner fuels for public transit vehicles, and a significant market penetration of battery-electric vehicles. The additional electricity demand associated with greater use of electric vehicles could amount to 10.8 TWh/year. The use of plug-in hybrid electric vehicles (PHEV) shows promising results due to high reductions in GHG emissions at a potentially manageable cost.  相似文献   

11.
This study presents a set of models that calculate carbon emissions in individual phases of flight during air cargo transportation, investigates resultant carbon footprints by aircraft type and flight route, and estimates increases in transportation costs for airlines due to carbon taxes imposed by the EU ETS. The estimated results provide useful references for airlines in aircraft assignment on different routes and in aircraft selection for new purchases. Validation of the model is conducted by simulating the potential impact of the implementation of the EU ETS on costs of air cargo transportation for six routes and six types of aircraft. Results show that the impact may be subject to various factors including unit carbon emissions per aircraft, aviation emission allowances per airline, and carbon trading prices; and that increases in costs of air cargo transportation range from 0% to 5.27% per aircraft per route. Therefore, the implementation of the EU ETS may encourage airlines to cut down their operating costs by reducing their carbon emissions, thereby ameliorating greenhouse gas pollution caused by air cargo transportation.  相似文献   

12.
To compare transportation greenhouse gas mitigation options with other sectors, we construct greenhouse gas mitigation supply curves of near-term technologies for all the major sectors of the US economy. Our findings indicate that motor vehicles and fuels are attractive candidates for reducing GHGs in the near and medium term. Transport technologies and fuels represent about half of the GHG mitigation options that have net-positive benefits – so-called “no regrets” strategies – and about 20% of the most cost-effective options to reduce GHGs to 10% below 1990 levels by 2030.  相似文献   

13.
Due to frequent stop-and-go operation and long idling periods when driving in congested urban areas, the electrification of commercial delivery trucks has become an interesting topic nationwide. In this study, environmental impacts of various alternative delivery trucks including battery electric, diesel, diesel-electric hybrid, and compressed natural gas trucks are analyzed. A novel life cycle assessment method, an environmentally-extended multi-region input-output analysis, is utilized to calculate energy and carbon footprints throughout the supply chain of alternative delivery trucks. The uncertainties due to fuel consumption or other key parameter variations in real life, data ranges are taken into consideration using a Monte Carlo simulation. Furthermore, variations in regional electricity mix greenhouse gas emission are also considered to present a region-specific assessment for each vehicle type. According to the analysis results, although the battery electric delivery trucks have zero tailpipe emission, electric trucks are not expected to have lower environmental impacts compared to other alternatives. On average, the electric trucks have slightly more greenhouse emissions and energy consumption than those of other trucks. The regional analysis also indicates that the percentage of cleaner power sources in the electricity mix plays an important role in the life cycle greenhouse gas emission impacts of electric trucks.  相似文献   

14.
Increasing awareness of sustainability in supply chain management has prompted organizations and individuals to consider environmental impacts when managing supply chains. The issues concerning environmental impacts are significant in cold supply chains due to substantial carbon emissions from storage and distribution of temperature-sensitive product. This paper investigates the impact of carbon emissions arising from storage and transportation in the cold supply chain in the presence of carbon tax regulation, and under uncertain demand. A two-stage stochastic programming model is developed to determine optimal replenishment policies and transportation schedules to minimize both operational and emissions costs. A matheuristic algorithm based on the Iterated Local Search (ILS) algorithm and a mixed integer programming is developed to solve the problem in realistic sizes. The performance and robustness of the matheuristic algorithm are analyzed using test instances in various sizes. A real-world case study in Queensland, Australia is used to demonstrate the application of the model. The results highlight that higher emissions price does not always contribute to the efficiency of the cold supply chain system. Furthermore, the analyses indicate that using heterogeneous fleet including light duty and medium duty vehicles can lead to further cost saving and emissions reduction.  相似文献   

15.
CO2 emissions are increasing because of the growth in the cross-border supply chain, which is leading the locations of assembly plants and suppliers to spread across a wider area. Given that one passenger vehicle needs more than 20,000 components and parts, the automobile industry exploits the cross-border supply chain. Recently, the free cross-border movement of people, goods, capital, and information has accelerated in Asia. Therefore, a sustainable cross-border supply chain is required to reduce both CO2 emissions and cost. This study estimates total CO2 emissions per vehicle including production and transportation processes in Thailand and neighboring countries and the change in CO2 emissions based on future policy scenarios that consider the automobile market and locational conditions in 2030. The results show that locating production close to the place of consumption and the electricity emissions factors in each country should be considered.  相似文献   

16.
To support the development of policies that reduce greenhouse gas (GHG) emissions by encouraging reduced travel and increased use of efficient transportation modes, it is necessary to better understand the explanatory effects that transportation, population density, and policy variables have on passenger travel related CO2 emissions. This study presents the development of a model of CO2 emissions per capita as a function of various explanatory variables using data on 146 urbanized areas in the United States. The model takes into account selectivity bias resulting from the fact that adopting policies aimed at reducing emissions in an urbanized area may be partly driven by the presence of environmental concerns in that area. The results indicate that population density, transit share, freeway lane-miles per capita, private vehicle occupancy, and average travel time have a statistically significant explanatory effect on passenger travel related CO2 emissions. In addition, the presence of automobile emissions inspection programs, which serves as a proxy indicator of other policies addressing environmental concerns and which could influence travelers in making environmentally favorable travel choices, markedly changes the manner in which transportation variables explain CO2 emission levels.  相似文献   

17.
Climate change and greenhouse gases emissions have caused countries to implement various carbon regulatory mechanisms in some industrial sectors around the globe to curb carbon emissions. One effective method to reduce industry environmental footprint is the use of a closed-loop supply chain (CLSC). The decision concerning the design and planning of an optimal network of the CLSC plays a vital role in determining the total carbon footprint across the supply chain and also the total cost. In this context, this research proposes an optimization model for design and planning a multi-period, multi-product CLSC with carbon footprint consideration under two different uncertainties. The demand and returns uncertainties are considered by means of multiple scenarios and uncertainty of carbon emissions due to supply chain related activities are considered by means of bounded box set and solve using robust optimization approach. The model extends further to investigate the impact of different carbon policies such as including strict carbon cap, carbon tax, carbon cap-and-trade, and carbon offset on the supply chain strategic and operational decisions. The model captures trade-offs that exist among supply chain total cost and carbon emissions. Also, the proposed model optimizes both supply chain total cost and carbon emissions across the supply chain activities. The numerical results reveal some insightful observations with respect to CLSC strategic design decisions and carbon emissions under various carbon policies and at the end we highlighted some managerial insights.  相似文献   

18.
Holiday travel behavior, individual characteristics of holiday travelers and strategies to change holiday travel behavior are the subjects of this article. From the environmental perspective, the journey to the destinations is the most critical aspect of traveling. Based on a 2003 survey of 1991 German inhabitants, the kilometers traveled and the choice of transportation mode for holiday purposes have been quantified. According to the number of trips and kilometers traveled, four travel groups have been identified. The groups vary according to socio-demographics, psychological factors, number of holiday trips, and travel mode choice. Persons who traveled to more distant destinations also traveled more often and used air travel for more than 60% of their trips. For the other groups, car travel was more important. Correlating the four travel groups with greenhouse gas emissions reveals that the smallest group—the long-haul travelers—was responsible for 80% of the emissions of the whole sample. Income, education, and openness to change were main indicators of individual greenhouse gas emissions. Target group oriented strategies to reduce the environmental impact of holiday mobility are discussed against the background of 84 in-depth interviews conducted with selected representatives of the first survey.  相似文献   

19.
Improving the efficiency and sustainability of supply chains is a shared aim of the transport industry, its customers, governments as well as industry organisations. To optimize supply chains and for the identification of best practice, standards for their analysis are needed in order to achieve comparable evaluations. This need for an evaluation standard also applies to CO2 emission calculations. This research focuses on the transportation within supply chains and possible approaches towards a global standard for calculating its CO2 emissions. In the recent past, several organisations, national and international, have come forward with possible methods, tools and databases for the calculation of CO2 emissions along supply chains, but almost all of them do not cover the entire transportation chain. Also standards for CO2 emissions of products and production in general do exist but they do not take the particular requirements of transportation into consideration. Therefore a global standard specifically for transportation could not yet be introduced. The EN 16258 standard is the only international standard for emission calculation of transportation in supply chains. It was therefore analyzed as a possible starting point for a global standardization approach. Analysis shows it too contains gaps and ambiguities which render comparisons of supply chains difficult. These gaps of the EN 16258 are analyzed, followed by suggestions for methodological improvements for their closure. The research concludes with an outlook on next steps needed towards a global CO2 calculation standard for transportation within supply chains.  相似文献   

20.
Transport sector’s substantial contribution to global greenhouse gas emissions has made it a growing area of study and concern. In order to identify trends and characteristics of carbon emissions research in the transportation sector we conducted a Bibexcel and complex network analysis for the period 1997–2016. In addition, we identify critical themes and contributions of research articles using h-index, PageRank and cluster analysis. We report contribution of countries, authors, institutions and journals, as well as performance of citations and keywords. Co-citing situations between different countries, authors, and institutions are also analyzed using network analysis. Between 1997 and 2016 we found a rise in publications on carbon emissions in the transportation sector and increased cooperation between countries, authors, and institutions. Authors from the USA, China and United Kingdom published the most articles and articles with the highest academic influence. Tsinghua University from China is the leading institution in carbon emissions research in the transportation sector. The most widely published author and cited author is Dr. He. We conclude our analysis by analyzing keywords and trends to suggest critical topic areas of future research. The systematic approach undertaken in this study can be extended and applied to other research topics and fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号