首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
沥青混凝土温度应力试验及其计算方法研究   总被引:6,自引:0,他引:6  
在采用约束试件温度应力试验(TSRST)进行大量的基础上,指出SHRP提出的温度应力典型曲线的不足,提出了完整的温度应力曲线规律。然后探讨了初始温度和降温速率等对温度应力的影响以及不同材料的低温抗裂性能。最后在分析已有的温度应力计算方法的基础上,提出考虑应力松驰效应的连续降温所产生的温度应力计算方法,运用该方法的计算结果与TSRST温度应力试验结果吻合较好。  相似文献   

2.
摘要:我国东北和西北部分区域属于高寒地区,在此区域修筑的道路在冬季常因温缩受力造成开裂破坏,这种低温开裂破坏对行驶舒适性与路面美观均有不利影响,提高沥青材料自身的低温抗裂性被证实是有效防治这种破坏的方法。据此,为找寻合适的沥青材料,通过SHRP计划提出的BBR(弯曲梁流变)试验和TSRST(约束试件温度应力试验)对不同沥青材料进行评价分析,找到合适的材料,然后通过铺筑试验段验证其使用效果,为我国高寒地区的路面破坏防治提供借鉴。  相似文献   

3.
排水性沥青混合料低温性能评价   总被引:2,自引:1,他引:1  
为了分析排水性沥青混合料低温性能的影响因素及评价方法,首先对3种改性沥青的原样、薄膜老化(TFOT)样品、压力老化(PAV)样品进行常规指标试验、-12℃弯曲流变仪(BBR)试验,评价沥青胶结料的低温性能;然后,对几种沥青成型的排水性沥青混合料进行约束试件温度应力试验(TSRST),评价排水性沥青混合料的低温抗裂性能,并通过与长期老化试件TSRST试验结果的对比,分析老化对排水性沥青混合料低温性能的影响。研究结果表明:沥青胶结料BBR试验的劲度模量与排水性沥青混合料的TSRST试验结果有很好的一致性;老化后的排水性沥青混合料冻断温度升高、冻断应力减小,低温性能降低;排水性沥青混合料的冻断应力约为密级配沥青混合料的1/3,冻断温度相近,2种类型沥青混合料低温性能相差不明显。  相似文献   

4.
王鹏  黄卫东  李淑明 《上海公路》2013,(1):55-58,14
高寒地区修筑的道路在冬季因常常发生路面结构的温缩开裂破坏,这种低温开裂破坏带来对路面质量、行驶舒适性与路面美观的不利影响,而实践证明沥青材料自身性能对于防治破坏的发生至关重要。为解决低温开裂造成的路面破坏,通过BBR(弯曲梁流变)试验和TSRST(约束应变温度应力试验)对不同沥青材料进行评价分析,并结合施工、经济方面因素,力图找出在高寒地区最为适用的沥青材料。  相似文献   

5.
采用约束试件温度应力试验(TSRST)、弯曲梁蠕变试验(BBR)和直接拉伸试验(DT)对聚合物沥青胶结料的低温流变特性与混合料的抗低温性能的线性相关性进行了探讨,重点研究了具有相同基质沥青PG等级、不同化学改性沥青混合料的低温断裂温度,对11种沥青胶结料的L(临界开裂温度)、BBR蠕变劲度(S)开裂温度、蠕变速率m值开裂温度以及各胶结料老化龄期进行了比较试验.试验表明:TSRST断裂温度与抗开裂的Tσ、BBR(S)开裂温度、m值开裂温度以及BBR极限温度的线性相关性都较差,但与Tσ的回归直线剔除ESI(乙烯-苯乙烯共聚物)数据点后,其相关系数由0.54增大到0.85.集料类型对TSRST断裂温度一般没什么影响,但在花岗岩中掺人熟石灰后可明显降低低温断裂温度.改性沥青胶结料经过2~24 h的短期老化(STOA)后其断裂温度与没有老化的PG等级为70-22的未改性沥青胶结料的断裂温度相近.  相似文献   

6.
张清源 《公路》2004,(3):77-79
试验采用约束试件温度应力试验仪(TSRST)进行应力松弛试验,通过试验方法测得在不同温度下瞬时弹性模量,得到沥青混合料的松弛模量G(t)。由松弛试验中应力随时间变化的数据,绘制不同温度下的应力松弛曲线,其结果较好地模拟了沥青混合料的粘弹性性质。通过松弛试验结果表明Burgers模型只适合于描述短期,不适合于描述长时间下的松弛行为。  相似文献   

7.
低温缩裂是沥青路面使用过程中遇到的主要病害之一,为了更清楚地揭示沥青路面低温缩裂的机理,基于内聚力模型,运用ABAQUS有限元软件对沥青路面的低温缩裂过程进行数值模拟.建立了粘弹性分析的模型,对约束试件温度应力试验(TSRST)进行数值模拟,其数值模拟结果与试验结果非常接近;拟定路面结构内聚力及粘弹性材料参数,模拟了不同降温时间情况下沥青面层断裂损伤的情况.结果表明:低温缩裂模型中加入粘弹性参数后,路表面层发生初始损伤的起始温度要求更低;从断裂过程上来看,弹性的沥青面层开裂具有瞬时性,开裂过程极为短暂;加入粘弹性材料参数后,沥青路面开裂具有过程性,比弹性的路面结构更接近实际沥青路面的开裂状况.  相似文献   

8.
通过采用约束试件温度应力试验仪 (TSRST)进行应力松弛试验 ,测得在不同温度下瞬时弹性模量 ,得到沥青混合料的松弛模量G(t) ;由松弛试验中应力随时间变化的数据 ,绘制不同温度下的应力松弛曲线 ,其结果较好地模拟了沥青混合料的粘弹性性质 ;试验结果表明 ,Burgers模型只适合于描述短期松驰的特性 ,不适合于描述长时间下的松弛行为。  相似文献   

9.
低温是造成沥青路面开裂的重要因素.通过不同材料破坏试验的应力-应变曲线求取应变能,并以弯曲应变能作为评价沥青低温性能的标准,同时以约束温度应力试验的结果验证评价结果的合理性.研究表明:采用弯曲应变能作为评价指标可以很好地表征材料的低温性能,并且与约束试件温度应力试验的结果基本吻合.  相似文献   

10.
由沥青和沥青混合料的劲度模量的常规数学公式,建立劲度模量和路面温度变化的线性关系,并考虑路面温度场的变化规律,根据Hills累计温度应力理论,用积分求出各面层的温度应力,编制沥青混合料温度应力的通用程序,在输入沥青和沥青混合料的几个常规指标后,便可直接得出沥青面层的温度应力,并和相应的TSRST试验数据作对比,结果相符.  相似文献   

11.
沥青混合料低温抗裂性能研究   总被引:12,自引:1,他引:12  
以低温弯曲试验为基础,得出沥青混合料破坏能的函数关系。采用Burgers模型作为本构模型,对低温弯曲蠕变试验结果进行非线性分析,得出材料模型的粘弹性参数。通过模拟路面降温条件,采用粘弹性方法以Burgers模型为基础得出温度应力的计算公式,以及温度应力产生的应变能的计算方法,进而以能量为判据,提出将温度应力产生的应变能与沥青混合料的破坏能相比较,从而判断沥青路面是否发生低温开裂的预估方法。  相似文献   

12.
To analyze influencing factors and evaluation method of low-temperature performance of porous asphalt mixture,first,three kinds of modified binder were chosen as original,thin film aging and pressure aging samples for customary index test and bending beam rheometer (BBR) test at -12 ℃ to evaluate low-temperature performance of these modified binders Then,evaluation of the low-temperature anti?cracking performance of different kinds of porous asphalt mixture was made by thermal stress restrained sample test (TSRST) At the sam e time,the result of abovementioned TSRST were compared with the TSRST result of  samples of the porous asphalt mixtures after long?term aging to evaluate the influence of  aging on low-temperature performance of porous asphalt mixtures The results show that (1) TSRST result of porous asphalt mixtures coincides with creep stiffnesses of BBR test of modified binders; (2) the fracture temperatures of the porous asphalt mixtures increase and their fracture stresses decrease after aging; (3) the fracture stresses of porous asphalt mixtures are just one-third of those of dense?gradation asphalt mixtures while the fracture temperatures almost the same,which indicates that their low?temperature performances are almost the same  相似文献   

13.
通过模拟沥青路面温度裂缝产生原理,自行研发了沥青混合料低温冻断试验设备,并进行了试验验证.通过应用位移实时补偿系统和耐低温高精度传感器,开发试件对心装置,采用不同的试件安放方式,这些措施使得该设备具有试验精度高、试验结果准确等特点.该设备可以完成沥青混合料温度应力试验、应力松弛试验、直接拉伸试验和收缩系数试验.利用该设...  相似文献   

14.
反射裂缝是半刚性基层沥青路面和刚性基层沥青路面的主要病害之一,针对这一问题,提出了采用开级配大粒径沥青碎石混合料作为裂缝缓解层的方法.基于开级配大粒径沥青碎石缓解层沥青路面温度应力的计算原理,以通用有限元软件ABAQUS为基础,对开级配大粒径沥青碎石缓解层沥青路面的温度应力进行分析,探讨了其结构层参数对其温度应力的影响规律.结果表明:开级配LSAM缓解层模量、厚度、空隙率对其自身温度应力具有显著的影响作用,是开级配LSAM缓解层沥青路面结构设计的重要参数.  相似文献   

15.
沥青路面的开裂是路面的主要病害之一,因而是各国道路界普遍关心的问题,沥青路面的低温开裂受各种环境因素的影响。文章采用四种级配的沥青混合料,三种试验条件,探讨了水对沥青混合料低温性能的影响,为路面设计中沥青混合料的选用提供参考。  相似文献   

16.
沥青路面Top-Down开裂成因的有限元分析   总被引:4,自引:4,他引:4  
源于路表面的轮迹带附近的纵向开裂(Top-Down开裂)是重交通沥青路面的主要损坏类型之一,也是国际沥青路面工程界对道路损坏研究的新热点。为此在实测轮胎接地压力的基础上,建立了路面结构的三维有限元模型,计算出4条实际道路的最大拉、剪应力值及其位置,绘制了它们的等值线图。对最大拉、剪应力位置与开裂现象,最大应力值与应力强度进行了比较和分析。分析结果表明,轮载下强大的剪应力是造成Top-Down开裂的主要原因。  相似文献   

17.
路面裂缝尖端应力强度因子是判断裂缝开裂扩展的重要指标,应用商业通用有限元软件ABAQUS,建立了8节点等参单元的有限元模型,采用奇异单元及断裂力学理论,根据实际情况,选取了不同的层厚、模量和裂缝深度,对半刚性基层沥青路面温度应力裂缝问题进行了数值分析。从理论上分析控制基层开裂的重要意义,建议降低基层水泥含量,同时,面层厚度的增加,对抵抗结构层的温度开裂并不明显,结果能反映路面破坏的现象和规律,为分析沥青路面温度开裂提供依据。  相似文献   

18.
大粒径沥青混合料基层结构抗裂机理分析   总被引:1,自引:0,他引:1  
为研究大粒径沥青混合料基层的抗裂机理,采用多层弹性理论程序计算了不同结构类型路面内荷载作用产生的应力应变,基于瞬态传热假设建立了平面有限元模型,计算了降温时路面结构内的温度应力和应变,得到了荷载与温度耦合下各结构层的变形和受力特性。研究发现,当考虑车辆荷载和快速降温共同作用时,快速降温所引起的温度应力远大于标准荷载引起的荷载应力,说明快速降温的温度应力对路面的开裂起主要作用。同时,通过两种结构对比,发现采用ATB 30基层结构的沥青混凝土面层的温度和荷载应力应变均小于传统的半刚性基层沥青混凝土路面。因此认为,设置沥青稳定碎石基层是一种减少沥青混凝土路面开裂的有效方法。  相似文献   

19.
李永琴 《公路》2021,(2):40-44
沥青混凝土桥面铺装层在低温条件下极易产生开裂,空气中水分、灰尘等通过裂缝深入到桥面板与铺装层中间,会进一步造成层间滑移、水损坏。为及时对沥青混凝土桥面铺装的低温开裂病害进行预警,降低后期维修养护费用,采用碳纤维、石墨制备了复合导电沥青混凝土,并通过间接拉伸蠕变试验研究了其变形发展与电阻率的变化关系,根据曲线特点利用多项式拟合获得了不同蠕变阶段其力-电机敏特性。结果表明:碳纤维-石墨导电沥青混凝土电阻率与应变在不同阶段分别呈现出二次非线性、线性相关关系。同时,结合实体工程设计了分布式光纤传感器布设方案与施工流程,即在桥面铺装层间布设分布式光纤,上面层铺筑碳纤维-石墨导电混凝土,形成一种新型桥面铺装结构,为沥青混凝土桥面铺装低温开裂预警提供了一种全新的思路。  相似文献   

20.
沥青路面的热粘弹性温度应力分析   总被引:1,自引:0,他引:1  
基于沥青路面混合料的热粘弹属性,利用有限元对不同降温条件以及不同结构形式的沥青路面温度应力响应进行了分析,研究了降温速率、初始温度、降温幅度、面层厚度、基层模量和温缩系数对温度应力的影响。结果表明,当温度较高时,沥青路面的温度收缩应力的累积值非常小;初始温度与降温速度对沥青路面的温度应力影响显著;薄的沥青面层容易出现反射裂缝,厚的沥青面层则可能出现由沥青面层表面向基层裂缝发展的对应裂缝;沥青路面的基层模量不宜过大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号