首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
质子交换膜燃料电池(PEMFC)移动电源技术   总被引:2,自引:0,他引:2  
燃料电池(FC)是一个新兴的研究领域。质子交换膜燃料电池(PEMFC)技术目前正处于实验室研究开发和逐渐走向实用化的阶段。介绍了PEMFC的单电池组成和工作原理,分析了PEMFC的技术发展及其特点,提出了新型PEMFC移动电源系统的体系结构,详细研究了PEMFC移动电源研发的关键技术,并指出了PEMFC移动电源技术的发展趋势。  相似文献   

2.
3.
简述了电站微机控制装置的抗干扰措施,介绍了几种常用抗干扰设计方法。  相似文献   

4.
汽车动力总成悬置研究的发展   总被引:9,自引:0,他引:9  
汽车动力总成悬置系统是汽车振动系统的一个重要子系统,对改善汽车平顺性和降低汽车噪声有着很大的影响。回顾了汽车动力总成悬置系统研究发展的历史,介绍了国内外汽车动力总成悬置系统研究发展中重要的研究工作和成果及目前研究发展的动态和趋势。  相似文献   

5.
零部件关键重要度指标是一种在数据相对缺乏的情况下评价装备零部件重要性的简单有效方法。在小型动力电源模糊故障树基础上构建了结构函数,并根据其结构函数建立了针对小型动力电源零部件最小割集的关键模糊重要度模型。最后运用某一工作250h的小型动力电源三角模糊故障数据对该模型进行了验证。  相似文献   

6.
This paper focuses on fuel economy improvement according to the type of power steering system. Usually, a conventional power steering system is directly driven by the crankshaft of the engine with a belt, known as HPS (hydraulic power steering). However, there is some inefficiency with this system at high engine speeds. To improve this inefficiency, automobile makers have developed two power steering systems: EHPS (electro-hydraulic power steering) and MDPS (motor-driven power steering) or EPS (electric powered steering). However, there has been insufficient study of effects of the type of power steering system on fuel economy. In this paper, the effect of the type of power steering system on fuel economy is studied experimentally, and calculations of the effect on vehicle fuel economy are presenting using computer simulation with AVL cruise software. The results demonstrate that a 1% vehicle fuel economy improvement can be achieved in a vehicle with an electro-hydraulic power steering system compared to a vehicle with a hydraulic power steering system. In addition, a 1.7% vehicle fuel economy improvement can be achieved using a full electric power steering system in a FTP-75 driving cycle. These results could be used to choose a power steering system.  相似文献   

7.
根据美国工业界武器系统效能咨询委员会的效能含义,结合小型动力电源的性能指标和在特定应用条件下的特殊要求,制定了小型动力电源系统效能分析的一般程序框图,并建立了基于RM&S的小型动力电源效能评估模型。最后以某一系列三种不同型号的小型动力电源开发过程中的相关数据为例,对该效能评估模型及效能分析程序的可行性进行验证。  相似文献   

8.
随着液压助力转向系统的不断应用与发展,人们对转向系统的要求越来越高。文章结合某氢燃料车型液压助力转向系统的设计,就该系统中的转向器和电动转向泵压力和流量进行匹配设计,对转向器垂臂摆角、转向油管的内径和油罐的容积、转向直拉杆的间隙和强度等进行设计和校核,确保了转向系统的安全性和合理性。  相似文献   

9.
通过软件ADVISOR对燃料电池电动车和各子系统进行了建模并对整车性能进行了仿真。仿真结果显示,在某种混合度下整车燃料经济性较高。通过仿真过程分析,描述了不同行驶循环的动力性要求、两供能部件效率以及混合度三者之间的相互影响和复杂关系,并给出了结论。  相似文献   

10.
杨鸣  杨勇 《客车技术》2011,(1):29-31
讨论了某型城市客车燃料电池系统设计中的关键问题,包括燃料电池、超级电容、电机等关键零部件的参数匹配.通过合理匹配和布置,从而提高了行车可靠性和安全性.  相似文献   

11.
In this paper, the combined power management/design optimization problem is investigated for a fuel cell/Liion battery PHEV. Formulated as a constrained multi-objective optimization problem (MOP), the combined optimization problem simultaneously minimizes the vehicle cost and fuel consumption subject to the vehicle performance requirements. With an emphasis on developing a generic optimization algorithm to find the Pareto front for the synthesized MOP, the Pareto based multi-objective particle swarm optimization (PMOPSO) algorithm is developed, which solely depends on the concept of Pareto dominance. Three approaches are introduced to the PMOPSO method to address the constrained MOP. They are: (i) by incorporating system constraints in the original objective functions, the constrained MOP is transformed to an unconstrained MOP; (ii) to avoid being trapped in local minima, a disturbance operator with a decaying mutation possibility is introduced; (iii) to generate a sparsely distributed Pareto front, the concept of crowding distance is utilized to determine the global guidance for the particles. Finally, under the Matlab/Simulink software environment, simulation results are presented to demonstrate the effectiveness of the PMOPSO in the derivation of the true Pareto front.  相似文献   

12.
本文分别介绍并讨论了国内外质子交换膜燃料电池(PEMFC)在电动汽车上的应用现状,描述和总结了各类电池汽车的前景和各自的竞争力量,分析了当前燃料电池汽车商业化需要解决的问题,如氢气的供应、成本以及存在的技术问题。  相似文献   

13.
设计了一种以80C196单片机为核心,集非电量测量、信号处理和接口技术于一体的动态检测火炮电站柴油机燃料系统的检测仪器,阐述了其检测原理,以及功能模块和软件的实现方法。  相似文献   

14.
新能源汽车是我国战略性新兴产业之一,2009年以来,我国逐步建立了以财税政策为主的支持政策体系,推动了我国新能源汽车产业从无到有,逐步发展壮大。新能源汽车产业政策对推动我国产业快速发展起到了关键性作用,但也面临“干预市场”、“干预技术路线”、“透支消费”等质疑,出现了“骗补谋补”、“补贴依赖症”等问题。目前我国燃料电池汽车仍处于市场起步期,大规模推广的条件尚未成熟,产业发展离不开国家政策的支持。如何继续发挥新能源汽车领域的先发优势,吸取前期产业发展经验教训,在下一步推广燃料电池汽车时少走弯路,加快推动产业发展,是当前燃料电池汽车产业发展面临的重大课题。  相似文献   

15.
Motorization in vehicles is expanding rapidly for fuel efficiency, customer comfort, convenience, and safety features. These new electric loads represent an increase in the required electric power. This has generated interest in new, higher power systems such as the 42V Power Net. The electro-hydraulic power steering (EHPS) system is one of these systems. This paper presents the development of the electric motor-driven pump unit for the EHPS system using a 42V power-Net. The interior type permanent magnet synchronous motor (IPMSM) can be applied to this system with more power density per volume for compactness of the EHPS. In order to improve the system, the IPMSM and its control method was optimized for improved torque characteristics and electric power consumption. The performances of both the pump unit and the IPMSM have been verified by experimental results. Finally, all in one type the electric motor-driven pump unit are developed from the experiment verification.  相似文献   

16.
An experimental research platform based on a dynamic testbed is developed and applied for fuel cell hybrid powertrain integration and control. A driver brake model is added to the dynamic testbed to simulate the braking process of an electric vehicle. Sub-systems of the fuel cell hybrid powertrain are tested, and characteristic parameters are obtained. A simulation platform is constructed in LabVIEW environment, and its validity is verified by dynamic test results. A real time control system is developed with an embedded PC for the function of rapid control prototyping. Using this platform, fuel cell battery hybrid and fuel cell supercapacitor hybrid configurations are investigated. This platform provides a powerful tool for fuel cell powertrain research and development.  相似文献   

17.
The fuel economy of a fuel cell hybrid vehicle (FCHV) depends on its power management strategy because the strategy determines the power split between the power sources. Several types of power management strategies have been developed to improve the fuel economy of FCHVs. This paper proposes an optimal control scheme based on the Minimum Principle. This optimal control provides the necessary optimality conditions that minimize the fuel consumption and optimize the power distribution between the fuel cell system (FCS) and the battery during driving. In this optimal control, the final battery state of charge (SOC) and the fuel consumption have an approximately proportional relationship. This relationship is expressed by a linear line, and this line is defined as the optimal line in this research. The optimal lines for different vehicle masses and different driving cycles are obtained and compared. This research presents a new method of fuel economy evaluation. The fuel economy of other power management strategies can be evaluated based on the optimal lines. A rule-based power management strategy is introduced, and its fuel economy is evaluated by the optimal line.  相似文献   

18.
In this study, correlation between vehicle fuel efficiency and total fuel energy consumption is analyzed to support the energy consumption and greenhouse gas (GHG) emissions reduction master plan in Korea. The background and highlights of recently amended fuel economy regulations and fuel efficiency labeling standards in Korea are also introduced. 18 representative vehicle groups, classified by class, type, size, and fuel, are selected by investigating vehicle distribution statistics based on market penetration and registration data sets in order to reflect and predict total fuel energy consumption in the overall ground transportation sector in Korea. Validity of the vehicle survival patterns modeled and vehicle classification rules are confirmed by comparing national fuel energy consumption statistics to the total amount of fuel consumed by each selected representative vehicle group. The latter figures are approximated from representative number of registrations, weighted average fuel economy, and average annual distance traveled.  相似文献   

19.
《JSAE Review》2002,23(4):407-414
Fuel properties play a dominant role in the spray, mixture formation and combustion process, and are a key to emission control and efficiency optimization. This paper deals with the influence of the fuel properties on the spray and combustion characteristics in a high-pressure and temperature chamber. Light diesel fuel spray and combustion images were taken by using a high-speed video camera and analyzed by their penetration and evaporation characteristics in comparison with current diesel fuel. Then, a single-cylinder DI engine was used to investigate combustion and exhaust characteristics. The mixture formation of the light diesel fuel is faster than that of the current fuel depending on physical properties like boiling point, density, viscosity and surface tension. Engine test results show that smoke is reduced without an increase in other emissions.  相似文献   

20.
The need for the unmanned ground combat vehicle (UGCV), which is used for the surveillance, reconnaissance and targeting during extremely dangerous condition on the battlefield, has steadily increased, and the transition from manned ground combat vehicles to unmanned ground combat vehicles is expected to reduce the loss of lives during battle. The UGCV needs many types of capabilities to achieve satisfactory performance. This paper focuses on the modeling and control of the power system of the UGCV, and proposes the fuel cell hybrid system (FCHS) for the power system of the UGCV. The fuel cell hybrid system has many advantages in stealth drive and the system efficiency. In addition, the FCHS is much quieter than the engine generator and generates much less heat. The benefits of the FCHS are advantageous for use in Army operations, which require ‘silent watch’ capability and the ability to operate without showing up on an enemy’s radar screen. The FCHS has a fuel cell and uses an energy storage system (ESS) as a power source. The ESS (e.g., batteries or ultracapacitors) helps the fuel cell supply power to the electric drive system and also recovers energy during deceleration. The ESS makes it possible to improve the efficiency and dynamic characteristic of the power system. In this paper, the FCHS is composed of different combinations of component models. The component sizes are chosen to satisfy performance requirements. In order to determine the power distribution between the fuel cell and the ESS, a power management strategy based on the required power and the SOC (state of charge) of the ESS is proposed. Batteries and ultracapacitor, components of the ESS, have different characteristics. Accordingly, varying the combination of ESS components can change the performance of the power system. The performance of the FCHS with respect to different combinations of ESS is analyzed using simulated results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号